Exemple #1
0
def main() -> None:
    # Generate solutions from a source task
    source_solutions = []
    for _ in range(1000):
        x = np.random.random(2)
        value = source_task(x[0], x[1])
        source_solutions.append((x, value))

    # Estimate a promising distribution of the source task
    ws_mean, ws_sigma, ws_cov = get_warm_start_mgd(
        source_solutions, gamma=0.1, alpha=0.1
    )
    optimizer = CMA(mean=ws_mean, sigma=ws_sigma, cov=ws_cov)

    # Run WS-CMA-ES
    print(" g    f(x1,x2)     x1      x2  ")
    print("===  ==========  ======  ======")
    while True:
        solutions = []
        for _ in range(optimizer.population_size):
            x = optimizer.ask()
            value = target_task(x[0], x[1])
            solutions.append((x, value))
            print(
                f"{optimizer.generation:3d}  {value:10.5f}"
                f"  {x[0]:6.2f}  {x[1]:6.2f}"
            )
        optimizer.tell(solutions)

        if optimizer.should_stop():
            break
Exemple #2
0
def update(frame):
    global solutions

    for i in range(args.pop_per_frame):
        x1 = (x1_upper_bound - x1_lower_bound) * rng.random() + x1_lower_bound
        x2 = (x2_upper_bound - x2_lower_bound) * rng.random() + x2_lower_bound

        evaluation = objective(x1, x2)

        # Plot sample points
        ax1.plot(x1, x2, "o", c="r", label="2d", alpha=0.5)

        solution = (
            np.array([x1, x2], dtype=float),
            evaluation,
        )
        solutions.append(solution)

    # Update title
    fig.suptitle(
        f"WS-CMA-ES {function_name} with alpha={args.alpha} and gamma={args.gamma} (frame={frame})"
    )

    # Plot multivariate gaussian distribution of CMA-ES
    x, y = np.mgrid[x1_lower_bound:x1_upper_bound:0.01,
                    x2_lower_bound:x2_upper_bound:0.01]

    if math.floor(len(solutions) * args.alpha) > 1:
        mean, sigma, cov = get_warm_start_mgd(solutions,
                                              alpha=args.alpha,
                                              gamma=args.gamma)
        rv = stats.multivariate_normal(mean, cov)
        pos = np.dstack((x, y))
        ax2.contourf(x, y, rv.pdf(pos))

    if frame % 50 == 0:
        print(f"Processing frame {frame}")
Exemple #3
0
    def _init_optimizer(
        self,
        trans: _SearchSpaceTransform,
        direction: StudyDirection,
        population_size: Optional[int] = None,
        randomize_start_point: bool = False,
    ) -> CmaClass:
        lower_bounds = trans.bounds[:, 0]
        upper_bounds = trans.bounds[:, 1]
        n_dimension = len(trans.bounds)

        if self._source_trials is None:
            if randomize_start_point:
                mean = lower_bounds + (upper_bounds - lower_bounds
                                       ) * self._cma_rng.rand(n_dimension)
            elif self._x0 is None:
                mean = lower_bounds + (upper_bounds - lower_bounds) / 2
            else:
                # `self._x0` is external representations.
                mean = trans.transform(self._x0)

            if self._sigma0 is None:
                sigma0 = np.min((upper_bounds - lower_bounds) / 6)
            else:
                sigma0 = self._sigma0

            cov = None
        else:
            expected_states = [TrialState.COMPLETE]
            if self._consider_pruned_trials:
                expected_states.append(TrialState.PRUNED)

            # TODO(c-bata): Filter parameters by their values instead of checking search space.
            sign = 1 if direction == StudyDirection.MINIMIZE else -1
            source_solutions = [
                (trans.transform(t.params), sign * cast(float, t.value))
                for t in self._source_trials if t.state in expected_states
                and _is_compatible_search_space(trans, t.distributions)
            ]
            if len(source_solutions) == 0:
                raise ValueError("No compatible source_trials")

            # TODO(c-bata): Add options to change prior parameters (alpha and gamma).
            mean, sigma0, cov = get_warm_start_mgd(source_solutions)

        # Avoid ZeroDivisionError in cmaes.
        sigma0 = max(sigma0, _EPS)

        if self._use_separable_cma:
            return SepCMA(
                mean=mean,
                sigma=sigma0,
                bounds=trans.bounds,
                seed=self._cma_rng.randint(1, 2**31 - 2),
                n_max_resampling=10 * n_dimension,
                population_size=population_size,
            )

        return CMA(
            mean=mean,
            sigma=sigma0,
            cov=cov,
            bounds=trans.bounds,
            seed=self._cma_rng.randint(1, 2**31 - 2),
            n_max_resampling=10 * n_dimension,
            population_size=population_size,
        )
    def test_dimension(self):
        optimizer = CMA(mean=np.zeros(10), sigma=1.3)
        source_solutions = [(optimizer.ask(), 0.0) for _ in range(100)]
        ws_mean, ws_sigma, ws_cov = get_warm_start_mgd(source_solutions)

        self.assertEqual(ws_mean.size, 10)