Exemple #1
0
    def test_option_parallel(self):
        prob = om.Problem()
        model = prob.model

        model.add_subsystem('p1', om.IndepVarComp('xC', 7.5))
        model.add_subsystem('p2', om.IndepVarComp('xI', 0.0))
        model.add_subsystem('comp', Branin())

        model.connect('p2.xI', 'comp.x0')
        model.connect('p1.xC', 'comp.x1')

        model.add_design_var('p2.xI', lower=-5.0, upper=10.0)
        model.add_design_var('p1.xC', lower=0.0, upper=15.0)
        model.add_objective('comp.f')

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output
        prob.driver.options['run_parallel'] = True

        prob.setup()
        prob.run_driver()

        # Optimal solution
        if extra_prints:
            print('comp.f', prob['comp.f'])
            print('p2.xI', prob['p2.xI'])
            print('p1.xC', prob['p1.xC'])
Exemple #2
0
    def test_vectorized_constraints(self):
        prob = om.Problem()

        dim = 2
        prob.model.add_subsystem('x',
                                 om.IndepVarComp('x', np.ones(dim)),
                                 promotes=['*'])
        prob.model.add_subsystem('f_x',
                                 om.ExecComp('f_x = sum(x * x)',
                                             x=np.ones(dim),
                                             f_x=1.0),
                                 promotes=['*'])
        prob.model.add_subsystem('g_x',
                                 om.ExecComp('g_x = 1 - x',
                                             x=np.ones(dim),
                                             g_x=np.zeros(dim)),
                                 promotes=['*'])

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        prob.model.add_design_var('x', lower=-10, upper=10)
        prob.model.add_objective('f_x')
        prob.model.add_constraint('g_x', upper=np.zeros(dim))

        prob.setup()
        prob.run_driver()

        if extra_prints:
            print('x', prob['x'])

        # Check that the constraint is approximately satisfied (x >= 1)
        for i in range(dim):
            self.assertLessEqual(1.0 - 1e-6, prob["x"][i])
Exemple #3
0
    def test_vector_desvars_multiobj(self):
        prob = om.Problem()

        indeps = prob.model.add_subsystem('indeps', om.IndepVarComp())
        indeps.add_output('x', 3)
        indeps.add_output('y', [4.0, -4])

        prob.model.add_subsystem('paraboloid1', om.ExecComp('f = (x+5)**2- 3'))
        prob.model.add_subsystem(
            'paraboloid2',
            om.ExecComp('f = (y[0]-3)**2 + (y[1]-1)**2 - 3', y=[0, 0]))
        prob.model.connect('indeps.x', 'paraboloid1.x')
        prob.model.connect('indeps.y', 'paraboloid2.y')

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        prob.model.add_design_var('indeps.x', lower=-5, upper=5)
        prob.model.add_design_var('indeps.y', lower=[-10, 0], upper=[10, 3])
        prob.model.add_objective('paraboloid1.f')
        prob.model.add_objective('paraboloid2.f')

        prob.setup()

        prob.set_val('indeps.x', 3)
        prob.set_val('indeps.y', np.ones(2, ))

        prob.run_driver()

        if extra_prints:
            print('indeps.x', prob['indeps.x'])
            print('indeps.y', prob['indeps.y'])

        np.testing.assert_array_almost_equal(prob['indeps.x'], -5)
        np.testing.assert_array_almost_equal(prob['indeps.y'], [3, 1])
Exemple #4
0
    def test_concurrent_eval_padded(self):
        # This test only makes sure we don't lock up if we overallocate
        # our integer desvar space to the next power of 2.

        class GAGroup(om.Group):
            def setup(self):
                self.add_subsystem('p1', om.IndepVarComp('x', 1.0))
                self.add_subsystem('p2', om.IndepVarComp('y', 1.0))
                self.add_subsystem('p3', om.IndepVarComp('z', 1.0))

                self.add_subsystem('comp', om.ExecComp(['f = x + y + z']))

                self.add_design_var('p1.x', lower=-100, upper=100)
                self.add_design_var('p2.y', lower=-100, upper=100)
                self.add_design_var('p3.z', lower=-100, upper=100)
                self.add_objective('comp.f')

        prob = om.Problem()
        prob.model = GAGroup()

        driver = prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output
        prob.driver.CMAOptions['popsize'] = 40

        driver.options['run_parallel'] = True

        prob.setup()

        # No meaningful result from a short run; just make sure we don't hang.
        prob.run_driver()
Exemple #5
0
    def test_constrained_without_penalty(self):
        class Cylinder(om.ExplicitComponent):
            def setup(self):
                self.add_input('radius', val=1.0)
                self.add_input('height', val=1.0)

                self.add_output('Area', val=1.0)
                self.add_output('Volume', val=1.0)

            def compute(self, inputs, outputs):
                radius = inputs['radius']
                height = inputs['height']

                area = height * radius * 2 * 3.14 + 3.14 * radius**2 * 2
                volume = 3.14 * radius**2 * height
                outputs['Area'] = area
                outputs['Volume'] = volume

        prob = om.Problem()
        prob.model.add_subsystem('cylinder', Cylinder(), promotes=['*'])

        indeps = prob.model.add_subsystem('indeps',
                                          om.IndepVarComp(),
                                          promotes=['*'])
        indeps.add_output('radius', 2.)  # height
        indeps.add_output('height', 3.)  # radius

        # setup the optimization
        driver = prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        prob.driver.options[
            'penalty_parameter'] = 0.  # no penalty, same as unconstrained
        prob.driver.options['penalty_exponent'] = 1.

        prob.model.add_design_var('radius', lower=0.5, upper=5.)
        prob.model.add_design_var('height', lower=0.5, upper=5.)
        prob.model.add_objective('Area')
        prob.model.add_constraint('Volume', lower=10.)

        prob.setup()
        prob.run_driver()

        if extra_prints:
            print('radius',
                  prob['radius'])  # exact solution is (5/pi)^(1/3) ~= 1.167
            print('height', prob['height'])  # exact solution is 2*radius
            print('Area', prob['Area'])
            print('Volume', prob['Volume'])  # should be around 10

        self.assertTrue(driver.supports["equality_constraints"], True)
        self.assertTrue(driver.supports["inequality_constraints"], True)
        # it is going to the unconstrained optimum
        self.assertAlmostEqual(prob['radius'], 0.5, 1)
        self.assertAlmostEqual(prob['height'], 0.5, 1)
    def test_simple_test_func(self):
        class MyComp(om.ExplicitComponent):
            def setup(self):
                self.add_input('x', np.zeros((2, )))

                self.add_output('a', 0.0)
                self.add_output('b', 0.0)
                self.add_output('c', 0.0)
                self.add_output('d', 0.0)

            def compute(self, inputs, outputs):
                x = inputs['x']

                outputs['a'] = (2.0 * x[0] - 3.0 * x[1])**2
                outputs['b'] = 18.0 - 32.0 * x[0] + 12.0 * x[0]**2 + 48.0 * x[
                    1] - 36.0 * x[0] * x[1] + 27.0 * x[1]**2
                outputs['c'] = (x[0] + x[1] + 1.0)**2
                outputs['d'] = 19.0 - 14.0 * x[0] + 3.0 * x[0]**2 - 14.0 * x[
                    1] + 6.0 * x[0] * x[1] + 3.0 * x[1]**2

        prob = om.Problem()
        model = prob.model

        model.add_subsystem('px', om.IndepVarComp('x', np.array([0.2, -0.2])))
        model.add_subsystem('comp', MyComp())
        model.add_subsystem('obj', om.ExecComp('f=(30 + a*b)*(1 + c*d)'))

        model.connect('px.x', 'comp.x')
        model.connect('comp.a', 'obj.a')
        model.connect('comp.b', 'obj.b')
        model.connect('comp.c', 'obj.c')
        model.connect('comp.d', 'obj.d')

        # Played with bounds so we don't get subtractive cancellation of tiny numbers.
        model.add_design_var('px.x',
                             lower=np.array([0.2, -1.0]),
                             upper=np.array([1.0, -0.2]))
        model.add_objective('obj.f')

        prob.driver = CMAESDriver()
        prob.driver.options['max_gen'] = 75

        prob.setup()
        prob.run_driver()

        if extra_prints:
            print('obj.f', prob['obj.f'])
            print('px.x', prob['px.x'])

        # TODO: Satadru listed this solution, but I get a way better one.
        # Solution: xopt = [0.2857, -0.8571], fopt = 23.2933
        assert_near_equal(prob['obj.f'], 12.37306086, 1e-4)
        assert_near_equal(prob['px.x'][0], 0.2, 1e-4)
        assert_near_equal(prob['px.x'][1], -0.88653391, 1e-4)
Exemple #7
0
    def test_rosenbrock(self):
        #
        # test case from test_differential_evolution_driver
        #
        from cmaes_driver import CMAESDriver

        ORDER = 6  # dimension of problem

        span = 2  # upper and lower limits
        lower_bound = -span * np.ones(ORDER)
        upper_bound = span * np.ones(ORDER)

        class RosenbrockComp(om.ExplicitComponent):
            """
            nth dimensional Rosenbrock function, array input and scalar output
            global minimum at f(1,1,1...) = 0
            """
            def initialize(self):
                self.options.declare('order',
                                     types=int,
                                     default=2,
                                     desc='dimension of input.')

            def setup(self):
                self.add_input('x', np.zeros(self.options['order']))
                self.add_output('y', 0.0)

            def compute(self, inputs, outputs):
                x = inputs['x']

                n = len(x)
                assert (n > 1)
                s = 0
                for i in range(n - 1):
                    s += 100 * (x[i + 1] - x[i] * x[i])**2 + (1 - x[i])**2

                outputs['y'] = s

        rosenbrock_model = om.Group()
        rosenbrock_model.add_subsystem('rosenbrock',
                                       RosenbrockComp(order=ORDER))
        rosenbrock_model.add_design_var('rosenbrock.x',
                                        lower=lower_bound,
                                        upper=upper_bound)
        rosenbrock_model.add_objective('rosenbrock.y')

        p = om.Problem(model=rosenbrock_model, driver=CMAESDriver())
        p.setup()
        p.run_driver()

        assert_near_equal(p['rosenbrock.y'], 0.0, 1e-3)
        assert_near_equal(p['rosenbrock.x'], np.ones(ORDER), 1e-3)
Exemple #8
0
    def test_simple_test_func(self):
        class MyComp(om.ExplicitComponent):
            def setup(self):
                self.add_input('x', np.zeros((2, )))

                self.add_output('a', 0.0)
                self.add_output('b', 0.0)
                self.add_output('c', 0.0)
                self.add_output('d', 0.0)

            def compute(self, inputs, outputs):
                x = inputs['x']

                outputs['a'] = (2.0 * x[0] - 3.0 * x[1])**2
                outputs['b'] = 18.0 - 32.0 * x[0] + 12.0 * x[0]**2 + 48.0 * x[
                    1] - 36.0 * x[0] * x[1] + 27.0 * x[1]**2
                outputs['c'] = (x[0] + x[1] + 1.0)**2
                outputs['d'] = 19.0 - 14.0 * x[0] + 3.0 * x[0]**2 - 14.0 * x[
                    1] + 6.0 * x[0] * x[1] + 3.0 * x[1]**2

        prob = om.Problem()

        prob.model.add_subsystem('comp', MyComp(), promotes_inputs=['x'])
        prob.model.add_subsystem('obj', om.ExecComp('f=(30 + a*b)*(1 + c*d)'))

        prob.model.connect('comp.a', 'obj.a')
        prob.model.connect('comp.b', 'obj.b')
        prob.model.connect('comp.c', 'obj.c')
        prob.model.connect('comp.d', 'obj.d')

        # Played with bounds so we don't get subtractive cancellation of tiny numbers.
        prob.model.add_design_var('x',
                                  lower=np.array([0.2, -1.0]),
                                  upper=np.array([1.0, -0.2]))
        prob.model.add_objective('obj.f')

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        prob.setup()

        prob.set_val('x', np.array([.5, -.5]))

        prob.run_driver()

        if extra_prints:
            print('obj.f', prob['obj.f'])
            print('x', prob['x'])

        assert_near_equal(prob['obj.f'], 12.37306086, 1e-4)
        assert_near_equal(prob['x'][0], 0.2, 1e-4)
        assert_near_equal(prob['x'][1], -0.88653391, 1e-4)
Exemple #9
0
    def test_distributed_obj(self):
        size = 3
        prob = om.Problem()
        model = prob.model

        ivc = om.IndepVarComp()
        ivc.add_output('x', np.ones((size, )))
        ivc.add_output('y', np.ones((size, )))
        ivc.add_output('a', -3.0 + 0.6 * np.arange(size))

        model.add_subsystem('p', ivc, promotes=['*'])
        model.add_subsystem("parab",
                            DistParab(arr_size=size, deriv_type='dense'),
                            promotes=['*'])
        model.add_subsystem('sum',
                            om.ExecComp('f_sum = sum(f_xy)',
                                        f_sum=np.ones((size, )),
                                        f_xy=np.ones((size, ))),
                            promotes=['*'])

        model.add_design_var('x', lower=-50.0, upper=50.0)
        model.add_design_var('y', lower=-50.0, upper=50.0)
        model.add_objective('f_xy')

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output
        prob.driver.CMAOptions['popsize'] = 10

        prob.driver.options['run_parallel'] = True
        prob.driver.options['procs_per_model'] = 2

        prob.setup()
        prob.run_driver()

        # optimal solution for minimize (x-a)^2 +x*y +(y+4)^2 - 3 for a=[-3, -2.4, -1.8] is:
        # x =    [ 6.66667,  5.86667,  5.06667]
        # y =    [-7.33333, -6.93333, -6.53333]
        # f_xy = [-27.3333, -23.0533, -19.0133]  mean f_xy = -23.1333

        # assert_near_equal(prob.get_val('x', get_remote=True),    [ 6.66667,  5.86667,  5.06667], 1e-3)
        # assert_near_equal(prob.get_val('y', get_remote=True),    [-7.33333, -6.93333, -6.53333], 1e-3)
        # assert_near_equal(prob.get_val('f_xy', get_remote=True), [-27.3333, -23.0533, -19.0133], 1e-3)
        # assert_near_equal(np.sum(prob.get_val('f_xy', get_remote=True))/3, -23.1333, 1e-4)

        if extra_prints:
            print('f_xy', prob.get_val('f_xy'))
            print('x', prob.get_val('x'))
            print('y', prob.get_val('y'))
Exemple #10
0
    def test_rosenbrock(self):
        ORDER = 6  # dimension of problem
        span = 2  # upper and lower limits

        class RosenbrockComp(om.ExplicitComponent):
            def setup(self):
                self.add_input('x', np.zeros(ORDER))
                self.add_output('y', 0.0)

            def compute(self, inputs, outputs):
                x = inputs['x']

                # nth dimensional Rosenbrock function, array input and scalar output
                # global minimum at f(1,1,1...) = 0
                n = len(x)
                assert (n > 1)
                s = 0
                for i in range(n - 1):
                    s += 100 * (x[i + 1] - x[i] * x[i])**2 + (1 - x[i])**2

                outputs['y'] = s

        prob = om.Problem()

        prob.model.add_subsystem('rosenbrock',
                                 RosenbrockComp(),
                                 promotes_inputs=['x'])
        prob.model.add_design_var('x',
                                  lower=-span * np.ones(ORDER),
                                  upper=span * np.ones(ORDER))
        prob.model.add_objective('rosenbrock.y')

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        prob.setup()
        prob.run_driver()

        # show results
        if extra_prints:
            print('rosenbrock.y', prob['rosenbrock.y'])
            print('x', prob['x'])
            print('objective function calls', prob.driver.iter_count, '\n')

        assert_near_equal(prob['rosenbrock.y'], 0.0, 1e-5)
        assert_near_equal(prob['x'], np.ones(ORDER), 1e-3)
Exemple #11
0
    def test_basic(self):
        prob = om.Problem()
        model = prob.model

        model.add_subsystem('comp',
                            Branin(),
                            promotes_inputs=[('x0', 'xI'), ('x1', 'xC')])

        model.add_design_var('xI', lower=-5.0, upper=10.0)
        model.add_design_var('xC', lower=0.0, upper=15.0)
        model.add_objective('comp.f')

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        prob.setup()
        prob.run_driver()
Exemple #12
0
    def test_rastrigin(self):
        import openmdao.api as om
        import numpy as np

        ORDER = 6  # dimension of problem
        span = 5  # upper and lower limits

        class RastriginComp(om.ExplicitComponent):
            def setup(self):
                self.add_input('x', np.zeros(ORDER))
                self.add_output('y', 0.0)

            def compute(self, inputs, outputs):
                x = inputs['x']

                # nth dimensional Rastrigin function, array input and scalar output
                # global minimum at f(0,0,0...) = 0
                n = len(x)
                s = 10 * n
                for i in range(n):
                    if np.abs(
                            x[i]
                    ) < 1e-200:  # avoid underflow runtime warnings from squaring tiny numbers
                        x[i] = 0.0
                    s += x[i] * x[i] - 10 * np.cos(2 * np.pi * x[i])

                outputs['y'] = s

        prob = om.Problem()

        prob.model.add_subsystem('rastrigin',
                                 RastriginComp(),
                                 promotes_inputs=['x'])
        prob.model.add_design_var('x',
                                  lower=-span * np.ones(ORDER),
                                  upper=span * np.ones(ORDER))
        prob.model.add_objective('rastrigin.y')

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        prob.setup()
        prob.run_driver()

        assert_near_equal(prob['rastrigin.y'], 0.0, 1e-6)
        assert_near_equal(prob['x'], np.zeros(ORDER), 1e-6)
Exemple #13
0
    def test_option_procs_per_model(self):
        prob = om.Problem()
        model = prob.model

        model.add_subsystem('p1', om.IndepVarComp('xC', 2.5))
        model.add_subsystem('p2', om.IndepVarComp('xI', 3.0))
        par = model.add_subsystem('par', om.ParallelGroup())

        par.add_subsystem('comp1', Branin())
        par.add_subsystem('comp2', Branin())

        model.connect('p2.xI', 'par.comp1.x0')
        model.connect('p1.xC', 'par.comp1.x1')
        model.connect('p2.xI', 'par.comp2.x0')
        model.connect('p1.xC', 'par.comp2.x1')

        model.add_subsystem('comp', om.ExecComp('f = f1 + f2'))
        model.connect('par.comp1.f', 'comp.f1')
        model.connect('par.comp2.f', 'comp.f2')

        model.add_design_var('p2.xI', lower=-5.0, upper=10.0)
        model.add_design_var('p1.xC', lower=0.0, upper=15.0)
        model.add_objective('comp.f')

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['popsize'] = 25

        prob.driver.options['run_parallel'] = True
        prob.driver.options['procs_per_model'] = 2

        prob.setup()

        prob.run_driver()

        # Optimal solution from DifferentialEvolutionDriver:
        #   comp.f [0.80220303]
        #   p2.xI [3.11628575]
        #   p1.xC [2.28300608]

        if extra_prints:
            print('comp.f', prob.get_val('comp.f'))
            print('p2.xI', prob.get_val('p2.xI'))
            print('p1.xC', prob.get_val('p1.xC'))
Exemple #14
0
    def test_driver_supports(self):
        prob = om.Problem()

        indeps = prob.model.add_subsystem('indeps',
                                          om.IndepVarComp(),
                                          promotes=['*'])

        # setup the optimization
        driver = prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        with self.assertRaises(KeyError) as raises_msg:
            prob.driver.supports['equality_constraints'] = False

        exception = raises_msg.exception

        msg = "CMAESDriver: Tried to set read-only option 'equality_constraints'."

        self.assertEqual(exception.args[0], msg)
Exemple #15
0
    def test_basic_with_assert(self):
        prob = om.Problem()
        model = prob.model

        model.add_subsystem('comp',
                            Branin(),
                            promotes_inputs=[('x0', 'xI'), ('x1', 'xC')])

        model.add_design_var('xI', lower=-5.0, upper=10.0)
        model.add_design_var('xC', lower=0.0, upper=15.0)
        model.add_objective('comp.f')

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        prob.setup()
        prob.run_driver()

        # Optimal solution (actual optimum, not the optimal with integer inputs as found by SimpleGA)
        assert_near_equal(prob['comp.f'], 0.397887, 1e-4)
Exemple #16
0
    def test_indivisible_error(self):
        prob = om.Problem()
        model = prob.model
        model.add_subsystem('par', om.ParallelGroup())

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        prob.driver.options['run_parallel'] = True
        prob.driver.options['procs_per_model'] = 3

        with self.assertRaises(RuntimeError) as context:
            prob.setup()

        self.assertEqual(
            str(context.exception),
            "The total number of processors is not evenly divisible by the "
            "specified number of processors per model.\n Provide a number of "
            "processors that is a multiple of 3, or specify a number "
            "of processors per model that divides into 4.")
Exemple #17
0
    def test_constrained_with_penalty(self):
        class Cylinder(om.ExplicitComponent):
            """Main class"""
            def setup(self):
                self.add_input('radius', val=1.0)
                self.add_input('height', val=1.0)

                self.add_output('Area', val=1.0)
                self.add_output('Volume', val=1.0)

            def compute(self, inputs, outputs):
                radius = inputs['radius']
                height = inputs['height']

                area = height * radius * 2 * 3.14 + 3.14 * radius**2 * 2
                volume = 3.14 * radius**2 * height
                outputs['Area'] = area
                outputs['Volume'] = volume

        prob = om.Problem()
        prob.model.add_subsystem('cylinder', Cylinder(), promotes=['*'])

        # setup the optimization
        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        prob.driver.options['penalty_parameter'] = 3.
        prob.driver.options['penalty_exponent'] = 1.

        prob.model.add_design_var('radius', lower=0.5, upper=5.)
        prob.model.add_design_var('height', lower=0.5, upper=5.)
        prob.model.add_objective('Area')
        prob.model.add_constraint('Volume', lower=10.)

        prob.setup()
        prob.run_driver()

        # These go to 0.5 for unconstrained problem. With constraint and penalty, they
        # will be above 1.0 (actual values will vary.)
        self.assertGreater(prob['radius'], 1.)
        self.assertGreater(prob['height'], 1.)
Exemple #18
0
    def test_option_pop_size(self):
        import openmdao.api as om
        from openmdao.test_suite.components.branin import Branin

        prob = om.Problem()
        model = prob.model

        model.add_subsystem('comp',
                            Branin(),
                            promotes_inputs=[('x0', 'xI'), ('x1', 'xC')])

        model.add_design_var('xI', lower=-5.0, upper=10.0)
        model.add_design_var('xC', lower=0.0, upper=15.0)
        model.add_objective('comp.f')

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output
        prob.driver.CMAOptions['popsize'] = 10

        prob.setup()
        prob.run_driver()
Exemple #19
0
    def test_CMAESDriver_missing_objective(self):
        prob = om.Problem()

        prob.model.add_subsystem('x',
                                 om.IndepVarComp('x', 2.0),
                                 promotes=['*'])
        prob.model.add_subsystem('f_x', Paraboloid(), promotes=['*'])

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        prob.model.add_design_var('x', lower=0)
        prob.model.add_constraint('x', lower=0)

        prob.setup()

        with self.assertRaises(Exception) as raises_msg:
            prob.run_driver()

        exception = raises_msg.exception

        msg = "Driver requires objective to be declared"

        self.assertEqual(exception.args[0], msg)
Exemple #20
0
    def test_analysis_error(self):
        class ValueErrorComp(om.ExplicitComponent):
            def setup(self):
                self.add_input('x', 1.0)
                self.add_output('f', 1.0)

            def compute(self, inputs, outputs):
                raise ValueError

        prob = om.Problem()

        prob.model.add_subsystem('comp',
                                 ValueErrorComp(),
                                 promotes_inputs=['x'])
        prob.model.add_design_var('x', lower=-5.0, upper=10.0)
        prob.model.add_objective('comp.f')

        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['popsize'] = 25
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        prob.setup()
        # prob.run_driver()
        self.assertRaises(ValueError, prob.run_driver)
Exemple #21
0
    def test_multi_obj(self):
        class Box(om.ExplicitComponent):
            def setup(self):
                self.add_input('length', val=1.)
                self.add_input('width', val=1.)
                self.add_input('height', val=1.)

                self.add_output('front_area', val=1.0)
                self.add_output('top_area', val=1.0)
                self.add_output('area', val=1.0)
                self.add_output('volume', val=1.)

            def compute(self, inputs, outputs):
                length = inputs['length']
                width = inputs['width']
                height = inputs['height']

                outputs['top_area'] = length * width
                outputs['front_area'] = length * height
                outputs[
                    'area'] = 2 * length * height + 2 * length * width + 2 * height * width
                outputs['volume'] = length * height * width

        prob = om.Problem()
        prob.model.add_subsystem('box', Box(), promotes=['*'])

        indeps = prob.model.add_subsystem('indeps',
                                          om.IndepVarComp(),
                                          promotes=['*'])
        indeps.add_output('length', 1.5)
        indeps.add_output('width', 1.5)
        indeps.add_output('height', 1.5)

        # setup the optimization
        prob.driver = CMAESDriver()
        prob.driver.CMAOptions['verbose'] = -9  # silence output

        prob.driver.options['multi_obj_exponent'] = 1.
        prob.driver.options['penalty_parameter'] = 10.
        prob.driver.options['multi_obj_weights'] = {
            'box.front_area': 0.1,
            'box.top_area': 0.9
        }
        prob.driver.options['multi_obj_exponent'] = 1

        prob.model.add_design_var('length', lower=0.1, upper=2.)
        prob.model.add_design_var('width', lower=0.1, upper=2.)
        prob.model.add_design_var('height', lower=0.1, upper=2.)
        prob.model.add_objective('front_area', scaler=-1)  # maximize
        prob.model.add_objective('top_area', scaler=-1)  # maximize
        prob.model.add_constraint('volume', upper=1.)

        # run #1
        prob.setup()
        prob.run_driver()

        front = prob['front_area']
        top = prob['top_area']
        l1 = prob['length']
        w1 = prob['width']
        h1 = prob['height']

        if extra_prints:
            print('Box dims: ', l1, w1, h1)
            print('Front and top area: ', front, top)
            print('Volume: ', prob['volume'])  # should be around 1

        # run #2
        # weights changed
        prob2 = om.Problem()
        prob2.model.add_subsystem('box', Box(), promotes=['*'])

        indeps2 = prob2.model.add_subsystem('indeps',
                                            om.IndepVarComp(),
                                            promotes=['*'])
        indeps2.add_output('length', 1.5)
        indeps2.add_output('width', 1.5)
        indeps2.add_output('height', 1.5)

        # setup the optimization
        prob2.driver = CMAESDriver()
        prob2.driver.CMAOptions['verbose'] = -9  # silence output

        prob2.driver.options['multi_obj_exponent'] = 1.
        prob2.driver.options['penalty_parameter'] = 10.
        prob2.driver.options['multi_obj_weights'] = {
            'box.front_area': 0.9,
            'box.top_area': 0.1
        }
        prob2.driver.options['multi_obj_exponent'] = 1

        prob2.model.add_design_var('length', lower=0.1, upper=2.)
        prob2.model.add_design_var('width', lower=0.1, upper=2.)
        prob2.model.add_design_var('height', lower=0.1, upper=2.)
        prob2.model.add_objective('front_area', scaler=-1)  # maximize
        prob2.model.add_objective('top_area', scaler=-1)  # maximize
        prob2.model.add_constraint('volume', upper=1.)

        # run #1
        prob2.setup()
        prob2.run_driver()

        front2 = prob2['front_area']
        top2 = prob2['top_area']
        l2 = prob2['length']
        w2 = prob2['width']
        h2 = prob2['height']

        if extra_prints:
            print('Box dims: ', l2, w2, h2)
            print('Front and top area: ', front2, top2)
            print('Volume: ', prob['volume'])  # should be around 1

        self.assertGreater(w1, w2)  # front area does not depend on width
        self.assertGreater(h2, h1)  # top area does not depend on height