}
            batch_loss, batch_acc, batch_preds = sess.run(
                [loss, accuracy, preds], feed_dict=feed_dict)

            test_loss += batch_loss
            test_acc += batch_acc
            full_pred.extend(batch_preds)
            full_batch.extend(label_batch)

        test_loss /= test_batches  # num_samples
        test_acc /= test_batches

        batchMatrix = defineImageRank(full_pred, full_batch)
        classList, num_of_frames = countTry(batchMatrix, num_classes)
        values = cmc_values(classList, num_of_frames)
        plot_cmc(values, "CMC", num_classes)

        # y_true per ogni immagine contiene il nome della classe vera
        # y_pred per ogni immagine contiene il nome della classe predetta
        y_true = []
        y_pred = []
        for i in range(0, len(full_batch)):
            y_true.append(batchMatrix[i][num_classes])  #classe vera
            y_pred.append(batchMatrix[i][0])  #classe predetta

        class_rep = classification_report(y_true, y_pred)

        class_names = []
        for i in range(0, num_classes):
            class_names.append(i)
        cnf_matrix = confusion_matrix(y_true, y_pred)
            [
                dist_matrix.append(
                    euclidean_distance(np.array(img_feature),
                                       np.array(gallery_features),
                                       gallery_true_class, num_classes,
                                       frames_gallery))
                for img_feature in batch_features
            ]

        dist_min = dist_matrix_avg(dist_matrix, frames_gallery)
        #dist_min = dist_matrix_min(dist_matrix, frames_gallery)

        batchMatrix = defineImageRank1(dist_min, full_label)
        classList, num_of_frames = countTry(batchMatrix, num_classes_test)
        values = cmc_values(classList, num_of_frames)
        plot_cmc(values, "CMC", num_classes_test)

        # y_true per ogni immagine contiene il nome della classe vera
        # y_pred per ogni immagine contiene il nome della classe predetta
        y_true = []
        y_pred = []
        for i in range(0, len(full_label)):
            y_true.append(batchMatrix[i][num_classes_test])  # classe vera
            y_pred.append(batchMatrix[i][0])  # classe predetta

        test_acc = accuracy_score(y_true, y_pred)
        class_names = []
        for i in range(0, num_classes):
            class_names.append(i)

        #confusion matrix here