def test_validate_big_run(self):
     exe = os.path.join(datafiles_path,
                        'bernoulli' + EXTENSION)  # fake out validation
     output = os.path.join(datafiles_path, 'runset-big', 'output_icar_nyc')
     sampler_args = SamplerArgs()
     cmdstan_args = CmdStanArgs(
         model_name='bernoulli',
         model_exe=exe,
         chain_ids=[1, 2],
         seed=12345,
         output_basename=output,
         method_args=sampler_args,
     )
     fit = StanFit(args=cmdstan_args, chains=2)
     fit._validate_csv_files()
     sampler_state = [
         'lp__',
         'accept_stat__',
         'stepsize__',
         'treedepth__',
         'n_leapfrog__',
         'divergent__',
         'energy__',
     ]
     phis = ['phi.{}'.format(str(x + 1)) for x in range(2095)]
     column_names = sampler_state + phis
     self.assertEqual(fit.columns, len(column_names))
     self.assertEqual(fit.column_names, tuple(column_names))
     self.assertEqual(fit.metric_type, 'diag_e')
     self.assertEqual(fit.stepsize.shape, (2, ))
     self.assertEqual(fit.metric.shape, (2, 2095))
     self.assertEqual((1000, 2, 2102), fit.sample.shape)
     phis = fit.get_drawset(params=['phi'])
     self.assertEqual((2000, 2095), phis.shape)
     phi1 = fit.get_drawset(params=['phi.1'])
     self.assertEqual((2000, 1), phi1.shape)
     mo_phis = fit.get_drawset(params=['phi.1', 'phi.10', 'phi.100'])
     self.assertEqual((2000, 3), mo_phis.shape)
     phi2095 = fit.get_drawset(params=['phi.2095'])
     self.assertEqual((2000, 1), phi2095.shape)
     with self.assertRaises(Exception):
         fit.get_drawset(params=['phi.2096'])
     with self.assertRaises(Exception):
         fit.get_drawset(params=['ph'])
    def test_validate_good_run(self):
        # construct fit using existing sampler output
        exe = os.path.join(datafiles_path, 'bernoulli' + EXTENSION)
        jdata = os.path.join(datafiles_path, 'bernoulli.data.json')
        output = os.path.join(goodfiles_path, 'bern')
        sampler_args = SamplerArgs(sampling_iters=100,
                                   max_treedepth=11,
                                   adapt_delta=0.95)
        cmdstan_args = CmdStanArgs(
            model_name='bernoulli',
            model_exe=exe,
            chain_ids=[1, 2, 3, 4],
            seed=12345,
            data=jdata,
            output_basename=output,
            method_args=sampler_args,
        )
        fit = StanFit(args=cmdstan_args, chains=4)
        retcodes = fit._retcodes
        for i in range(len(retcodes)):
            fit._set_retcode(i, 0)
        self.assertTrue(fit._check_retcodes())
        fit._check_console_msgs()
        fit._validate_csv_files()
        self.assertEqual(4, fit.chains)
        self.assertEqual(100, fit.draws)
        self.assertEqual(8, len(fit.column_names))
        self.assertEqual('lp__', fit.column_names[0])

        df = fit.get_drawset()
        self.assertEqual(df.shape,
                         (fit.chains * fit.draws, len(fit.column_names)))
        _ = fit.summary()

        # TODO - use cmdstan test files instead
        expected = '\n'.join([
            'Checking sampler transitions treedepth.',
            'Treedepth satisfactory for all transitions.',
            '\nChecking sampler transitions for divergences.',
            'No divergent transitions found.',
            '\nChecking E-BFMI - sampler transitions HMC potential energy.',
            'E-BFMI satisfactory for all transitions.',
            '\nEffective sample size satisfactory.',
        ])
        self.assertIn(expected, fit.diagnose().replace("\r\n", "\n"))