Exemple #1
0
def test_metric():
    metric1 = Metric('reproduction_rate',
                     1.0,
                     levels=(2.4, 3.0),
                     boundaries=(0, None))
    metric2 = Metric('reproduction_rate',
                     2.0,
                     levels=(2.4, 3.0),
                     boundaries=(0, None))
    assert metric1.name == 'reproduction_rate'
    assert metric1.value == 1.0
    assert metric1.levels == (2.4, 3.0)
    assert metric1.boundaries == (0., None)

    assert metric1 == metric1  # pylint: disable=comparison-with-itself
    assert metric1 != metric2
def _create_new_result(
        is_details,  # type: bool
        legacy_state,  # type: int
        legacy_text,  # type: str
        legacy_metrics=(),  # type: Union[Tuple, List]
):
    # type: (...) -> Generator[Union[Metric, Result], None, bool]
    result_state = state(legacy_state)

    if legacy_state or legacy_text:  # skip "Null"-Result
        if is_details:
            summary = None  # type: Optional[str]
            details = legacy_text  # type: Optional[str]
        else:
            is_details = "\n" in legacy_text
            summary, details = legacy_text.split(
                "\n", 1) if is_details else (legacy_text, None)
        yield Result(state=result_state, summary=summary, details=details)

    for metric in legacy_metrics:
        # fill up with None:
        name, value, warn, crit, min_, max_ = (
            v for v, _ in itertools.zip_longest(metric, range(6)))
        yield Metric(name, value, levels=(warn, crit), boundaries=(min_, max_))

    return is_details
Exemple #3
0
def test_metric():
    metric = Metric('reproduction_rate',
                    2.0,
                    levels=(2.4, 3.0),
                    boundaries=(0, None))
    assert metric.name == 'reproduction_rate'
    assert metric.value == 2.0
    assert metric.levels == (2.4, 3.0)
    assert metric.boundaries == (0., None)
Exemple #4
0
def check_levels(
        value,  # type: float
        _sentinel=_SENTINEL,  # type: Any # enforce keyword usage, remove with CMK-3983 # *,
        levels_upper=None,  # tpye: Optional[Tuple[float, float]]
        levels_lower=None,  # tpye: Optional[Tuple[float, float]]
        metric_name=None,  # type: str
        render_func=None,  # type: Callable[[float], str]
        label=None,  # type: str
        boundaries=None,  # type: Optional[Tuple[Optional[float], Optional[float]]]
):
    # type: (...) -> Generator[Union[Result, Metric], None, None]
    """Generic function for checking a value against levels

    :param value:        Currently measured value
    :param levels_upper: Pair of upper thresholds. If value is larger than these, the
                         service goes to **WARN** or **CRIT**, respecively.
    :param levels_lower: Pair of lower thresholds. If value is smaller than these, the
                         service goes to **WARN** or **CRIT**, respecively.
    :param metric_name:   Name of the datasource in the RRD that corresponds to this value
                         or None in order to skip perfdata
    :param render_func:  Single argument function to convert the value from float into a
                         human readable string.
                         readable fashion
    :param label:        Label to prepend to the output.
    :param boundaries:   Minimum and maximum to add to the metric.
    """
    # TODO (mo): unhack this CMK-3983
    if _sentinel is not _SENTINEL:
        raise TypeError("check_levels only accepts one positional argument")

    if render_func is None:
        render_func = "%.2f".format

    info_text = str(render_func(value))  # forgive wrong output type
    if label:
        info_text = "%s: %s" % (label, info_text)

    value_state, levels_text = _do_check_levels(value, levels_upper,
                                                levels_lower, render_func)

    yield Result(state=value_state, summary=info_text + levels_text)
    if metric_name:
        yield Metric(metric_name,
                     value,
                     levels=levels_upper,
                     boundaries=boundaries)
Exemple #5
0
def check_levels(
    value: float,
    *,
    levels_upper=None,  # tpye: Optional[Tuple[float, float]]
    levels_lower=None,  # tpye: Optional[Tuple[float, float]]
    metric_name: str = None,
    render_func: Callable[[float], str] = None,
    label: str = None,
    boundaries: Optional[Tuple[Optional[float], Optional[float]]] = None,
) -> Generator[Union[Result, Metric], None, None]:
    """Generic function for checking a value against levels.

    :param value:        Currently measured value
    :param levels_upper: Pair of upper thresholds. If value is larger than these, the
                         service goes to **WARN** or **CRIT**, respecively.
    :param levels_lower: Pair of lower thresholds. If value is smaller than these, the
                         service goes to **WARN** or **CRIT**, respecively.
    :param metric_name:  Name of the datasource in the RRD that corresponds to this value
                         or None in order to skip perfdata
    :param render_func:  Single argument function to convert the value from float into a
                         human readable string.
                         readable fashion
    :param label:        Label to prepend to the output.
    :param boundaries:   Minimum and maximum to add to the metric.
    """
    if render_func is None:
        render_func = lambda f: "%.2f" % f

    info_text = str(render_func(value))  # forgive wrong output type
    if label:
        info_text = "%s: %s" % (label, info_text)

    value_state, levels_text = _do_check_levels(value, levels_upper,
                                                levels_lower, render_func)

    yield Result(state=value_state, summary=info_text + levels_text)
    if metric_name:
        yield Metric(metric_name,
                     value,
                     levels=levels_upper,
                     boundaries=boundaries)
Exemple #6
0
def _create_new_result(
    implicit_newline,  # type: str
    legacy_state,  # type: int
    legacy_text,  # type: str
    legacy_metrics=(),  # type: Union[Tuple, List]
):
    # type: (...) -> Generator[Union[Metric, Result], None, str]
    kwargs = {"state": state(legacy_state)}  # type: Dict[str, Any]
    components = (implicit_newline + legacy_text).split("\n", 1)
    kwargs["summary"] = components[0]
    if len(components) > 1:
        # make sure its longer than summary
        kwargs["details"] = ("%%-%ds" % (len(components[0]) + 1)) % components[1]

    yield Result(**kwargs)

    for metric in legacy_metrics:
        # fill up with None:
        name, value, warn, crit, min_, max_ = (
            v for v, _ in itertools.zip_longest(metric, range(6)))
        yield Metric(name, value, levels=(warn, crit), boundaries=(min_, max_))

    return "\n" if len(components) > 1 else ""
Exemple #7
0
def test_metric_invalid(name, value, levels, boundaries):
    with pytest.raises(TypeError):
        _ = Metric(name, value, levels=levels, boundaries=boundaries)
Exemple #8
0
def test_metric_kwarg():
    with pytest.raises(TypeError):
        _ = Metric("universe", 42,
                   (23, 23))  # py # lint: disable=too-many-function-args
Exemple #9
0
        (1, (3, 6), (1, 0), int, (state.OK, "")),
        (0, (3, 6), (1, 0), int, (state.WARN, " (warn/crit below 1/0)")),
        (-1, (3, 6), (1, 0), int, (state.CRIT, " (warn/crit below 1/0)")),
    ])
def test_boundaries(value, levels_upper, levels_lower, render_func, result):
    assert utils._do_check_levels(value, levels_upper, levels_lower,
                                  render_func) == result


@pytest.mark.parametrize("value, kwargs, result", [
    (5, {
        "metric_name": "battery",
        "render_func": render.percent,
    }, [
        Result(state=state.OK, summary="5.00%"),
        Metric("battery", 5.0),
    ]),
    (6, {
        "metric_name": "disk",
        "levels_upper": (4, 8),
        "render_func": lambda x: "%.2f years" % x,
        "label": "Disk Age",
    }, [
        Result(
            state=state.WARN,
            summary="Disk Age: 6.00 years (warn/crit at 4.00 years/8.00 years)"
        ),
        Metric("disk", 6.0, levels=(4., 8.)),
    ]),
    (5e-7, {
        "metric_name": "H_concentration",
Exemple #10
0
def check_levels_predictive(
    value: float,
    *,
    levels,  # tpye: Dict[str, Any]
    metric_name: str,
    render_func: Optional[Callable[[float], str]] = None,
    label: Optional[str] = None,
    boundaries: Optional[Tuple[Optional[float], Optional[float]]] = None,
) -> Generator[Union[Result, Metric], None, None]:
    """Generic function for checking a value against levels.

    :param value:        Currently measured value
    :param levels:       Predictive levels. These are used automatically.
                         Lower levels are imposed if the passed dictionary contains "lower"
                         as key, upper levels are imposed if it contains "upper" or
                         "levels_upper_min" as key.
                         If value is lower/higher than these, the service goes to **WARN**
                         or **CRIT**, respecively.
    :param metric_name:  Name of the datasource in the RRD that corresponds to this value
    :param render_func:  Single argument function to convert the value from float into a
                         human readable string.
                         readable fashion
    :param label:        Label to prepend to the output.
    :param boundaries:   Minimum and maximum to add to the metric.
    """
    if render_func is None:
        render_func = "%.2f".format

    # validate the metric name, before we can get the levels.
    Metric.validate_name(metric_name)

    try:
        ref_value, levels_tuple = cmk.base.prediction.get_levels(
            check_api_utils.host_name(),
            check_api_utils.service_description(),
            metric_name,
            levels,
            "MAX",
        )
        if ref_value:
            predictive_levels_msg = " (predicted reference: %s)" % render_func(
                ref_value)
        else:
            predictive_levels_msg = " (no reference for prediction yet)"

    except MKGeneralException as e:
        ref_value = None
        levels_tuple = (None, None, None, None)
        predictive_levels_msg = " (no reference for prediction: %s)" % e

    except Exception as e:
        if cmk.utils.debug.enabled():
            raise
        yield Result(state=state.UNKNOWN, summary="%s" % e)
        return

    levels_upper = (None if levels_tuple[0] is None or levels_tuple[1] is None
                    else (levels_tuple[0], levels_tuple[1]))

    levels_lower = (None if levels_tuple[2] is None or levels_tuple[3] is None
                    else (levels_tuple[2], levels_tuple[3]))

    value_state, levels_text = _do_check_levels(value, levels_upper,
                                                levels_lower, render_func)

    if label:
        info_text = "%s: %s%s" % (label, render_func(value),
                                  predictive_levels_msg)
    else:
        info_text = "%s%s" % (render_func(value), predictive_levels_msg)

    yield Result(state=value_state, summary=info_text + levels_text)
    yield Metric(metric_name,
                 value,
                 levels=levels_upper,
                 boundaries=boundaries)
    if ref_value:
        Metric("predict_%s" % metric_name, ref_value)
Exemple #11
0
                        lambda tp: _check_timeperiod(tp, active_timeperiods))

    determined_check_params = cmk.base.checking.legacy_determine_check_params(
        rules)
    assert expected_result == determined_check_params, (
        "Determine params: Expected '%s' but got '%s'" %
        (expected_result, determined_check_params))


def _check_timeperiod(timeperiod, active_timeperiods):
    return timeperiod in active_timeperiods


@pytest.mark.parametrize("subresults, aggregated_results", [
    ([], cmk.base.checking.ITEM_NOT_FOUND),
    ([
        Result(state=state.OK, details="details"),
    ], (0, "Everything looks OK - 1 detail available\ndetails", [])),
    ([
        Result(state=state.OK, summary="summary1", details="detailed info1"),
        Result(state=state.WARN, summary="summary2", details="detailed info2"),
    ], (1, "summary1, summary2(!)\ndetailed info1\ndetailed info2(!)", [])),
    ([
        Result(state=state.OK, summary="summary"),
        Metric(name="name", value=42),
    ], (0, "summary\nsummary", [("name", 42.0, None, None, None, None)])),
])
def test_aggregate_result(subresults, aggregated_results):
    assert cmk.base.checking._aggregate_results(
        subresults) == aggregated_results