Exemple #1
0
    def test_loglikelihood(self):
        gsm = GSM(3, 1)

        samples = gsm.sample(100000)

        # compute entropy analytically
        entropy = 0.5 * slogdet(2. * pi * e * gsm.covariance / gsm.scales)[1]

        # compare with estimated entropy
        self.assertAlmostEqual(entropy, -mean(gsm.loglikelihood(samples)), 1)
Exemple #2
0
	def test_loglikelihood(self):
		gsm = GSM(3, 1)

		samples = gsm.sample(100000)

		# compute entropy analytically
		entropy = 0.5 * slogdet(2. * pi * e * gsm.covariance / gsm.scales)[1]

		# compare with estimated entropy
		self.assertAlmostEqual(entropy, -mean(gsm.loglikelihood(samples)), 1)
Exemple #3
0
	def test_basics(self):
		gsm = GSM(3, 5)

		self.assertTrue(gsm.scales.size, 5)
		self.assertTrue(gsm.dim, 3)

		covariance = cov(randn(gsm.dim, 10))
		gsm.covariance = covariance

		self.assertLess(max(abs(gsm.covariance - covariance)), 1e-8)
Exemple #4
0
    def test_basics(self):
        gsm = GSM(3, 5)

        self.assertTrue(gsm.scales.size, 5)
        self.assertTrue(gsm.dim, 3)

        covariance = cov(randn(gsm.dim, 10))
        gsm.covariance = covariance

        self.assertLess(max(abs(gsm.covariance - covariance)), 1e-8)
Exemple #5
0
	def test_pickle(self):
		models = [
			Mixture(dim=5),
			MoGSM(dim=3, num_components=4, num_scales=7)]

		for _ in range(3):
			models[0].add_component(GSM(models[0].dim, 7))

		for model0 in models:
			tmp_file = mkstemp()[1]

			# store model
			with open(tmp_file, 'w') as handle:
				dump({'model': model0}, handle)

			# load model
			with open(tmp_file) as handle:
				model1 = load(handle)['model']

			# make sure parameters haven't changed
			self.assertEqual(model0.dim, model1.dim)
			self.assertEqual(model0.num_components, model1.num_components)

			for k in range(model0.num_components):
				self.assertLess(max(abs(model0[k].scales - model0[k].scales)), 1e-10)
				self.assertLess(max(abs(model0[k].priors - model1[k].priors)), 1e-10)
				self.assertLess(max(abs(model0[k].mean - model1[k].mean)), 1e-10)
				self.assertLess(max(abs(model0[k].covariance - model1[k].covariance)), 1e-10)
Exemple #6
0
	def test_train(self):
		model = Mixture(3)

		model.add_component(GSM(3, 1))
		model.add_component(GSM(3, 1))

		self.assertRaises(Exception, model.add_component, GSM(5))
		self.assertRaises(Exception, model.__getitem__, 2)

		self.assertIsInstance(model[1], GSM)

		p0 = 0.3
		p1 = 0.7
		N = 20000
		m0 = array([[2], [0], [0]])
		m1 = array([[0], [2], [1]])
		C0 = cov(randn(model.dim, model.dim**2))
		C1 = cov(randn(model.dim, model.dim**2))
		data = hstack([
			dot(cholesky(C0), randn(model.dim, int(p0 * N))) + m0,
			dot(cholesky(C1), randn(model.dim, int(p1 * N))) + m1])

		# if this is not call train() will initialize the parameters
		model.initialize(data)

		model[0].mean = m0
		model[1].mean = m1
		model[0].covariance = C0
		model[1].covariance = C1
		model[0].scales = [1.]
		model[1].scales = [1.]

		# training shouldn't change the parameters too much
		model.train(data, parameters={'verbosity': 0, 'max_iter': 20, 'threshold': 1e-7})

		self.assertLess(abs(1. - model.priors[0] / p0), 0.1)
		self.assertLess(abs(1. - model.priors[1] / p1), 0.1)
		self.assertLess(max(abs(model[0].mean - m0)), 0.2)
		self.assertLess(max(abs(model[1].mean - m1)), 0.2)
		self.assertLess(max(abs(model[0].covariance / model[0].scales - C0)), 0.2)
		self.assertLess(max(abs(model[1].covariance / model[1].scales - C1)), 0.2)
Exemple #7
0
	def test_pickle(self):
		model0 = GSM(7, 9)

		model0.mean = randn(7, 1)
		model0.covariance = cov(randn(7, 20))

		tmp_file = mkstemp()[1]

		# store model
		with open(tmp_file, 'w') as handle:
			dump({'model': model0}, handle)

		# load model
		with open(tmp_file) as handle:
			model1 = load(handle)['model']

		# make sure parameters haven't changed
		self.assertEqual(model0.dim, model1.dim)
		self.assertEqual(model0.num_scales, model1.num_scales)

		self.assertLess(max(abs(model0.scales - model0.scales)), 1e-10)
		self.assertLess(max(abs(model0.priors - model1.priors)), 1e-10)
		self.assertLess(max(abs(model0.mean - model1.mean)), 1e-10)
		self.assertLess(max(abs(model0.covariance - model1.covariance)), 1e-10)
Exemple #8
0
    def test_pickle(self):
        model0 = GSM(7, 9)

        model0.mean = randn(7, 1)
        model0.covariance = cov(randn(7, 20))

        tmp_file = mkstemp()[1]

        # store model
        with open(tmp_file, 'w') as handle:
            dump({'model': model0}, handle)

        # load model
        with open(tmp_file) as handle:
            model1 = load(handle)['model']

        # make sure parameters haven't changed
        self.assertEqual(model0.dim, model1.dim)
        self.assertEqual(model0.num_scales, model1.num_scales)

        self.assertLess(max(abs(model0.scales - model0.scales)), 1e-10)
        self.assertLess(max(abs(model0.priors - model1.priors)), 1e-10)
        self.assertLess(max(abs(model0.mean - model1.mean)), 1e-10)
        self.assertLess(max(abs(model0.covariance - model1.covariance)), 1e-10)
Exemple #9
0
	def test_train(self):
		gsm0 = GSM(3, 2)
		gsm0.mean = [1, 1, 1]
		gsm0.scales = [1, 5]
		gsm0.priors = [0.7, 0.3]

		gsm0.covariance = gsm0.covariance / power(det(gsm0.covariance), 1. / gsm0.dim)

		samples = gsm0.sample(50000)

		# try to recover parameters
		gsm1 = GSM(3, 2)
		gsm1.train(samples, parameters={'max_iter': 50})

		# normalize
		f = power(det(gsm1.covariance), 1. / gsm1.dim)
		gsm1.covariance = gsm1.covariance / f
		gsm1.scales = gsm1.scales / f

		self.assertLess(max(abs(gsm1.mean - gsm0.mean)), 0.2)
		self.assertLess(max(abs(1. - sort(gsm1.priors.ravel()) / sort(gsm0.priors.ravel()))), 0.2)
		self.assertLess(max(abs(1. - sort(gsm1.scales.ravel()) / sort(gsm0.scales.ravel()))), 0.2)
		self.assertLess(max(abs(gsm1.covariance - gsm0.covariance)), 0.2)

		weights = rand(1, samples.shape[1])
		weights /= sum(weights)

		gsm1 = GSM(3, 2)
		gsm1.train(samples, weights=weights, parameters={'max_iter': 100})

		# normalize
		f = power(det(gsm1.covariance), 1. / gsm1.dim)
		gsm1.covariance = gsm1.covariance / f
		gsm1.scales = gsm1.scales / f

		self.assertLess(max(abs(gsm1.mean - gsm0.mean)), 0.2)
		self.assertLess(max(abs(1. - sort(gsm1.priors.ravel()) / sort(gsm0.priors.ravel()))), 0.2)
		self.assertLess(max(abs(1. - sort(gsm1.scales.ravel()) / sort(gsm0.scales.ravel()))), 0.2)
		self.assertLess(max(abs(gsm1.covariance - gsm0.covariance)), 0.2)
Exemple #10
0
    def test_train(self):
        gsm0 = GSM(3, 2)
        gsm0.mean = [1, 1, 1]
        gsm0.scales = [1, 5]
        gsm0.priors = [0.7, 0.3]

        gsm0.covariance = gsm0.covariance / power(det(gsm0.covariance),
                                                  1. / gsm0.dim)

        samples = gsm0.sample(50000)

        # try to recover parameters
        gsm1 = GSM(3, 2)
        gsm1.train(samples, parameters={'max_iter': 50})

        # normalize
        f = power(det(gsm1.covariance), 1. / gsm1.dim)
        gsm1.covariance = gsm1.covariance / f
        gsm1.scales = gsm1.scales / f

        self.assertLess(max(abs(gsm1.mean - gsm0.mean)), 0.2)
        self.assertLess(
            max(abs(1. -
                    sort(gsm1.priors.ravel()) / sort(gsm0.priors.ravel()))),
            0.2)
        self.assertLess(
            max(abs(1. -
                    sort(gsm1.scales.ravel()) / sort(gsm0.scales.ravel()))),
            0.2)
        self.assertLess(max(abs(gsm1.covariance - gsm0.covariance)), 0.2)

        weights = rand(1, samples.shape[1])
        weights /= sum(weights)

        gsm1 = GSM(3, 2)
        gsm1.train(samples, weights=weights, parameters={'max_iter': 100})

        # normalize
        f = power(det(gsm1.covariance), 1. / gsm1.dim)
        gsm1.covariance = gsm1.covariance / f
        gsm1.scales = gsm1.scales / f

        self.assertLess(max(abs(gsm1.mean - gsm0.mean)), 0.2)
        self.assertLess(
            max(abs(1. -
                    sort(gsm1.priors.ravel()) / sort(gsm0.priors.ravel()))),
            0.2)
        self.assertLess(
            max(abs(1. -
                    sort(gsm1.scales.ravel()) / sort(gsm0.scales.ravel()))),
            0.2)
        self.assertLess(max(abs(gsm1.covariance - gsm0.covariance)), 0.2)