def GraphIsomorphism(G1, G2):
    """Graph Isomorphism formula

    The formula is the CNF encoding of the statement that two simple
    graphs G1 and G2 are isomorphic.

    Parameters
    ----------
    G1 : networkx.Graph
        an undirected graph object
    G2 : networkx.Graph
        an undirected graph object

    Returns
    -------
    A CNF formula which is satiafiable if and only if graphs G1 and G2
    are isomorphic.

    """
    F = CNF()
    F.header = "Graph Isomorphism problem between graphs " +\
               G1.name + " and " + G2.name + "\n" + F.header
    F.mode_strict()

    U=enumerate_vertices(G1)
    V=enumerate_vertices(G2)
    var = _graph_isomorphism_var

    for (u, v) in product(U,V):
        F.add_variable(var(u, v))

    # Defined on both side
    for u in U:
        F.add_clause([(True, var(u, v)) for v in V])

    for v in V:
        F.add_clause([(True, var(u, v)) for u in U])

    # Injective on both sides
    for u in U:
        for v1, v2 in combinations(V, 2):
            F.add_clause([(False, var(u, v1)),
                          (False, var(u, v2))])
    for v in V:
        for u1, u2 in combinations(U, 2):
            F.add_clause([(False, var(u1, v)),
                          (False, var(u2, v))])

    # Edge consistency
    for u1, u2 in combinations(U, 2):
        for v1, v2 in combinations(V, 2):
            if G1.has_edge(u1, u2) != G2.has_edge(v1, v2):
                F.add_clause([(False, var(u1, v1)),
                              (False, var(u2, v2))])
                F.add_clause([(False, var(u1, v2)),
                              (False, var(u2, v1))])

    return F
Exemple #2
0
def GraphIsomorphism(G1, G2):
    """Graph Isomorphism formula

    The formula is the CNF encoding of the statement that two simple
    graphs G1 and G2 are isomorphic.

    Parameters
    ----------
    G1 : networkx.Graph
        an undirected graph object
    G2 : networkx.Graph
        an undirected graph object

    Returns
    -------
    A CNF formula which is satiafiable if and only if graphs G1 and G2
    are isomorphic.

    """
    F = CNF()
    F.header = "Graph Isomorphism problem between graphs " +\
               G1.name + " and " + G2.name + "\n" + F.header

    U = enumerate_vertices(G1)
    V = enumerate_vertices(G2)
    var = _graph_isomorphism_var

    for (u, v) in product(U, V):
        F.add_variable(var(u, v))

    # Defined on both side
    for u in U:
        F.add_clause([(True, var(u, v)) for v in V], strict=True)

    for v in V:
        F.add_clause([(True, var(u, v)) for u in U], strict=True)

    # Injective on both sides
    for u in U:
        for v1, v2 in combinations(V, 2):
            F.add_clause([(False, var(u, v1)), (False, var(u, v2))],
                         strict=True)
    for v in V:
        for u1, u2 in combinations(U, 2):
            F.add_clause([(False, var(u1, v)), (False, var(u2, v))],
                         strict=True)

    # Edge consistency
    for u1, u2 in combinations(U, 2):
        for v1, v2 in combinations(V, 2):
            if G1.has_edge(u1, u2) != G2.has_edge(v1, v2):
                F.add_clause([(False, var(u1, v1)), (False, var(u2, v2))],
                             strict=True)
                F.add_clause([(False, var(u1, v2)), (False, var(u2, v1))],
                             strict=True)

    return F
Exemple #3
0
def GraphAutomorphism(G):
    """Graph Automorphism formula

    The formula is the CNF encoding of the statement that a graph G
    has a nontrivial automorphism, i.e. an automorphism different from
    the idential one.

    Parameter
    ---------
    G : a simple graph

    Returns
    -------
    A CNF formula which is satiafiable if and only if graph G has a
    nontrivial automorphism.
    """
    tmp = CNF()
    header = "Graph automorphism formula for graph " + G.name + "\n" + tmp.header
    F = GraphIsomorphism(G, G)
    F.header = header

    var = _graph_isomorphism_var

    F.add_clause([(False, var(u, u)) for u in enumerate_vertices(G)],
                 strict=True)

    return F
def GraphAutomorphism(G):
    """Graph Automorphism formula

    The formula is the CNF encoding of the statement that a graph G
    has a nontrivial automorphism, i.e. an automorphism different from
    the idential one.

    Parameter
    ---------
    G : a simple graph

    Returns
    -------
    A CNF formula which is satiafiable if and only if graph G has a
    nontrivial automorphism.
    """
    tmp = CNF()
    header = "Graph automorphism formula for graph "+ G.name +"\n"+ tmp.header
    F = GraphIsomorphism(G, G)
    F.header = header

    var = _graph_isomorphism_var

    F.add_clause([(False, var(u, u)) for u in enumerate_vertices(G)], strict=True)

    return F
Exemple #5
0
def PerfectMatchingPrinciple(G):
    """Generates the clauses for the graph perfect matching principle.

    The principle claims that there is a way to select edges to such
    that all vertices have exactly one incident edge set to 1.

    Parameters
    ----------
    G : undirected graph

    """
    cnf = CNF()

    # Describe the formula
    name = "Perfect Matching Principle"

    if hasattr(G, 'name'):
        cnf.header = name + " of graph:\n" + G.name + "\n" + cnf.header
    else:
        cnf.header = name + ".\n" + cnf.header

    def var_name(u, v):
        if u <= v:
            return 'x_{{{0},{1}}}'.format(u, v)
        else:
            return 'x_{{{0},{1}}}'.format(v, u)

    # Each vertex has exactly one edge set to one.
    for v in enumerate_vertices(G):

        edge_vars = [var_name(u, v) for u in neighbors(G, v)]
        cnf.add_equal_to(edge_vars, 1)

    return cnf
Exemple #6
0
def PerfectMatchingPrinciple(G):
    """Generates the clauses for the graph perfect matching principle.
    
    The principle claims that there is a way to select edges to such
    that all vertices have exactly one incident edge set to 1.

    Parameters
    ----------
    G : undirected graph

    """
    cnf=CNF()

    # Describe the formula
    name="Perfect Matching Principle"
    
    if hasattr(G,'name'):
        cnf.header=name+" of graph:\n"+G.name+"\n"+cnf.header
    else:
        cnf.header=name+".\n"+cnf.header

    def var_name(u,v):
        if u<=v:
            return 'x_{{{0},{1}}}'.format(u,v)
        else:
            return 'x_{{{0},{1}}}'.format(v,u)
            
    # Each vertex has exactly one edge set to one.
    for v in enumerate_vertices(G):

        edge_vars = [var_name(u,v) for u in neighbors(G,v)]
        cnf.add_equal_to(edge_vars,1)

    return cnf
Exemple #7
0
def TseitinFormula(graph,charges=None):
    """Build a Tseitin formula based on the input graph.

    Odd charge is put on the first vertex by default, unless other
    vertices are is specified in input.

    Arguments:
    - `graph`: input graph
    - `charges': odd or even charge for each vertex
    """
    V=enumerate_vertices(graph)

    if charges==None:
        charges=[1]+[0]*(len(V)-1)             # odd charge on first vertex
    else:
        charges = [bool(c) for c in charges]   # map to boolean

    if len(charges)<len(V):
        charges=charges+[0]*(len(V)-len(charges))  # pad with even charges

    # init formula
    tse=CNF()
    for e in sorted(graph.edges(),key=sorted):
        tse.add_variable(edgename(e))

    # add constraints
    for v,c in zip(V,charges):
        
        # produce all clauses and save half of them
        names = [ edgename((u,v)) for u in neighbors(graph,v) ]
        for cls in parity_constraint(names,c):
            tse.add_clause(list(cls),strict=True)

    return tse
Exemple #8
0
def EvenColoringFormula(G):
    """Even coloring formula

    The formula is defined on a graph :math:`G` and claims that it is
    possible to split the edges of the graph in two parts, so that
    each vertex has an equal number of incident edges in each part.

    The formula is defined on graphs where all vertices have even
    degree. The formula is satisfiable only on those graphs with an
    even number of vertices in each connected component [1]_.

    Arguments
    ---------
    G : networkx.Graph 
       a simple undirected graph where all vertices have even degree

    Raises
    ------
    ValueError
       if the graph in input has a vertex with odd degree

    Returns
    -------
    CNF object

    References
    ----------
    .. [1] Locality and Hard SAT-instances, Klas Markstrom
       Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 221-228

    """
    F = CNF()
    F.mode_strict()
    F.header = "Even coloring formula on graph " + G.name + "\n" + F.header

    def var_name(u, v):
        if u <= v:
            return 'x_{{{0},{1}}}'.format(u, v)
        else:
            return 'x_{{{0},{1}}}'.format(v, u)

    for (u, v) in enumerate_edges(G):
        F.add_variable(var_name(u, v))

    # Defined on both side
    for v in enumerate_vertices(G):

        if G.degree(v) % 2 == 1:
            raise ValueError(
                "Markstrom formulas requires all vertices to have even degree."
            )

        edge_vars = [var_name(u, v) for u in neighbors(G, v)]

        # F.add_exactly_half_floor would work the same
        F.add_exactly_half_ceil(edge_vars)

    return F
Exemple #9
0
def EvenColoringFormula(G):
    """Even coloring formula

    The formula is defined on a graph :math:`G` and claims that it is
    possible to split the edges of the graph in two parts, so that
    each vertex has an equal number of incident edges in each part.

    The formula is defined on graphs where all vertices have even
    degree. The formula is satisfiable only on those graphs with an
    even number of vertices in each connected component [1]_.

    Arguments
    ---------
    G : networkx.Graph 
       a simple undirected graph where all vertices have even degree

    Raises
    ------
    ValueError
       if the graph in input has a vertex with odd degree

    Returns
    -------
    CNF object

    References
    ----------
    .. [1] Locality and Hard SAT-instances, Klas Markstrom
       Journal on Satisfiability, Boolean Modeling and Computation 2 (2006) 221-228

    """
    F = CNF()
    F.header = "Even coloring formula on graph " + G.name + "\n" + F.header

    def var_name(u,v):
        if u<=v:
            return 'x_{{{0},{1}}}'.format(u,v)
        else:
            return 'x_{{{0},{1}}}'.format(v,u)
    
    for (u, v) in enumerate_edges(G):
        F.add_variable(var_name(u, v))

    # Defined on both side
    for v in enumerate_vertices(G):

        if G.degree(v) % 2 == 1:
            raise ValueError("Markstrom formulas requires all vertices to have even degree.")

        edge_vars = [ var_name(u,v) for u in neighbors(G,v) ]
        
        for cls in CNF.equal_to_constraint(edge_vars,
                                           len(edge_vars)/2):
            F.add_clause(cls,strict=True)

    return F
Exemple #10
0
def PebblingFormula(digraph):
    """Pebbling formula

    Build a pebbling formula from the directed graph. If the graph has
    an `ordered_vertices` attribute, then it is used to enumerate the
    vertices (and the corresponding variables).

    Arguments:
    - `digraph`: directed acyclic graph.
    """
    if not is_dag(digraph):
        raise ValueError(
            "Pebbling formula is defined only for directed acyclic graphs")

    peb = CNF()
    peb.mode_unchecked()

    if hasattr(digraph, 'name'):
        peb.header = "Pebbling formula of: "+digraph.name+"\n\n"+peb.header
    else:
        peb.header = "Pebbling formula\n\n"+peb.header

    # add variables in the appropriate order
    vertices = enumerate_vertices(digraph)
    position = dict((v, i) for (i, v) in enumerate(vertices))

    for v in vertices:
        peb.add_variable(
            v, description="There is a pebble on vertex ${}$".format(v))

    # add the clauses
    for v in vertices:

        # If predecessors are pebbled the vertex must be pebbled
        pred = sorted(digraph.predecessors(v), key=lambda x: position[x])
        peb.add_clause([(False, p) for p in pred]+[(True, v)])

        if digraph.out_degree(v) == 0:  # the sink
            peb.add_clause([(False, v)])

    return peb
Exemple #11
0
def PebblingFormula(digraph):
    """Pebbling formula

    Build a pebbling formula from the directed graph. If the graph has
    an `ordered_vertices` attribute, then it is used to enumerate the
    vertices (and the corresponding variables).

    Arguments:
    - `digraph`: directed acyclic graph.
    """
    if not is_dag(digraph):
        raise ValueError("Pebbling formula is defined only for directed acyclic graphs")

    peb=CNF()
    peb.mode_unchecked()

    if hasattr(digraph,'name'):
        peb.header="Pebbling formula of: "+digraph.name+"\n\n"+peb.header
    else:
        peb.header="Pebbling formula\n\n"+peb.header

    # add variables in the appropriate order
    vertices=enumerate_vertices(digraph)
    position=dict((v,i) for (i,v) in enumerate(vertices))

    for v in vertices:
        peb.add_variable(v,description="There is a pebble on vertex ${}$".format(v))

    # add the clauses
    for v in vertices:

        # If predecessors are pebbled the vertex must be pebbled
        pred=sorted(digraph.predecessors(v),key=lambda x:position[x])
        peb.add_clause([(False,p) for p in pred]+[(True,v)])

        if digraph.out_degree(v)==0: #the sink
            peb.add_clause([(False,v)])

    return peb
Exemple #12
0
def TseitinFormula(graph,charges=None):
    """Build a Tseitin formula based on the input graph.

    Odd charge is put on the first vertex by default, unless other
    vertices are is specified in input.

    Arguments:
    - `graph`: input graph
    - `charges': odd or even charge for each vertex
    """
    V=enumerate_vertices(graph)

    if charges==None:
        charges=[1]+[0]*(len(V)-1)             # odd charge on first vertex
    else:
        charges = [bool(c) for c in charges]   # map to boolean

    if len(charges)<len(V):
        charges=charges+[0]*(len(V)-len(charges))  # pad with even charges

    # init formula
    tse=CNF()
    edgename = { }
    
    for (u,v) in sorted(graph.edges(),key=sorted):
        edgename[(u,v)] =  "E_{{{0},{1}}}".format(u,v)
        edgename[(v,u)] =  "E_{{{0},{1}}}".format(u,v)
        tse.add_variable(edgename[(u,v)])

    # add constraints
    for v,c in zip(V,charges):
        
        # produce all clauses and save half of them
        names = [ edgename[(u,v)] for u in neighbors(graph,v) ]
        for cls in CNF.parity_constraint(names,c):
            tse.add_clause(list(cls),strict=True)

    return tse
Exemple #13
0
def VertexCover(G, d):
    F = CNF()

    def D(v):
        return "x_{{{0}}}".format(v)

    def N(v):
        return tuple(sorted([e for e in G.edges(v)]))

    # Fix the vertex order
    V = enumerate_vertices(G)

    # Create variables
    for v in V:
        F.add_variable(D(v))

    # Not too many true variables
    F.add_less_or_equal([D(v) for v in V], d)

    # Every edge must have a true D variable
    for e in G.edges():
        F.add_clause([(True, D(v)) for v in e])

    return F
def DominatingSetOPB(G,d,tiling,seed):
    F=CNF()

    def D(v):
        return "x_{{{0}}}".format(v)

    def N(v):
        return tuple(sorted([ v ] + [ u for u in G.neighbors(v) ]))

    # Fix the vertex order
    V=enumerate_vertices(G)

    #avgdegree=sum(len(set(N(v))) for v in V)/len(V)
    #d=len(V)/(avgdegree+1)
    
    # Create variables
    for v in V:
        F.add_variable(D(v))

    # Not too many true variables
    if not tiling:
        F.add_less_or_equal([D(v) for v in V],d)

    # Every neighborhood must have a true D variable
    neighborhoods = sorted( set(N(v) for v in V) )
    for N in neighborhoods:
        if tiling:
            F.add_equal_to([D(v) for v in N], 1)
        else:
            F.add_clause([(True,D(v)) for v in N])

    # Set some vertex to true
    if seed:
        F.add_clause([(True,D(V[0]))])
        
    return F
Exemple #15
0
def VertexCover(G,d):
    F=CNF()

    def D(v):
        return "x_{{{0}}}".format(v)

    def N(v):
        return tuple(sorted([ e for e in G.edges(v) ]))

    # Fix the vertex order
    V=enumerate_vertices(G)

    # Create variables
    for v in V:
        F.add_variable(D(v))

    # Not too many true variables
    F.add_less_or_equal([D(v) for v in V],d)

    # Every edge must have a true D variable
    for e in G.edges():
        F.add_clause([ (True,D(v)) for v in e])
        
    return F
Exemple #16
0
def GraphOrderingPrinciple(graph,
                           total=False,
                           smart=False,
                           plant=False,
                           knuth=0):
    """Generates the clauses for graph ordering principle

    Arguments:
    - `graph` : undirected graph
    - `total` : add totality axioms (i.e. "x < y" or "x > y")
    - `smart` : "x < y" and "x > y" are represented by a single variable (implies `total`)
    - `plant` : allow last element to be minimum (and could make the formula SAT)
    - `knuth` : Don Knuth variants 2 or 3 of the formula (anything else suppress it)
    """
    gop = CNF()

    # Describe the formula
    if total or smart:
        name = "Total graph ordering principle"
    else:
        name = "Ordering principle"

    if smart:
        name = name + "(compact representation)"

    if hasattr(graph, 'name'):
        gop.header = name + "\n on graph " + graph.name + ".\n\n" + gop.header
    else:
        gop.header = name + ".\n\n" + gop.header

    # Fix the vertex order
    V = enumerate_vertices(graph)

    # Add variables
    iterator = combinations if smart else permutations
    for v1, v2 in iterator(V, 2):
        gop.add_variable(varname(v1, v2))

    #
    # Non minimality axioms
    #

    # Clause is generated in such a way that if totality is enforces,
    # every pair occurs with a specific orientation.
    # Allow minimum on last vertex if 'plant' options.

    for med in xrange(len(V) - (plant and 1)):
        clause = []
        for lo in xrange(med):
            if graph.has_edge(V[med], V[lo]):
                clause += [(True, varname(V[lo], V[med]))]
        for hi in xrange(med + 1, len(V)):
            if not graph.has_edge(V[med], V[hi]):
                continue
            elif smart:
                clause += [(False, varname(V[med], V[hi]))]
            else:
                clause += [(True, varname(V[hi], V[med]))]
        gop.add_clause(clause, strict=True)

    #
    # Transitivity axiom
    #

    if len(V) >= 3:
        if smart:
            # Optimized version if smart representation of totality is used
            for (v1, v2, v3) in combinations(V, 3):

                gop.add_clause([(True, varname(v1, v2)),
                                (True, varname(v2, v3)),
                                (False, varname(v1, v3))],
                               strict=True)

                gop.add_clause([(False, varname(v1, v2)),
                                (False, varname(v2, v3)),
                                (True, varname(v1, v3))],
                               strict=True)

        elif total:
            # With totality we still need just two axiom per triangle
            for (v1, v2, v3) in combinations(V, 3):

                gop.add_clause([(False, varname(v1, v2)),
                                (False, varname(v2, v3)),
                                (False, varname(v3, v1))],
                               strict=True)

                gop.add_clause([(False, varname(v1, v3)),
                                (False, varname(v3, v2)),
                                (False, varname(v2, v1))],
                               strict=True)

        else:
            for (v1, v2, v3) in permutations(V, 3):

                # knuth variants will reduce the number of
                # transitivity axioms
                if knuth == 2 and ((v2 < v1) or (v2 < v3)):
                    continue
                if knuth == 3 and ((v3 < v1) or (v3 < v2)):
                    continue

                gop.add_clause([(False, varname(v1, v2)),
                                (False, varname(v2, v3)),
                                (True, varname(v1, v3))],
                               strict=True)

    if not smart:
        # Antisymmetry axioms (useless for 'smart' representation)
        for (v1, v2) in combinations(V, 2):
            gop.add_clause([(False, varname(v1, v2)),
                            (False, varname(v2, v1))],
                           strict=True)

        # Totality axioms (useless for 'smart' representation)
        if total:
            for (v1, v2) in combinations(V, 2):
                gop.add_clause([(True, varname(v1, v2)),
                                (True, varname(v2, v1))],
                               strict=True)

    return gop
Exemple #17
0
def StoneFormula(D, nstones):
    """Stone formulas

    The stone formulas have been introduced in [2]_ and generalized in
    [1]_. They are one of the classic examples that separate regular
    resolutions from general resolution [1]_.

    A \"Stones formula\" from a directed acyclic graph :math:`D`
    claims that each vertex of the graph is associated with one on
    :math:`s` stones (not necessarily in an injective way).
    In particular for each vertex :math:`v` in :math:`V(D)` and each
    stone :math:`j` we have a variable :math:`P_{v,j}` that claims
    that stone :math:`j` is associated to vertex :math:`v`.

    Each stone can be either red or blue, and not both.
    The propositional variable :math:`R_j` if true when the stone
    :math:`j` is red and false otherwise.

    The clauses of the formula encode the following constraints.
    If a stone is on a source vertex (i.e. a vertex with no incoming
    edges), then it must be red. If all stones on the predecessors of
    a vertex are red, then the stone of the vertex itself must be red.

    The formula furthermore enforces that the stones on the sinks
    (i.e. vertices with no outgoing edges) are blue.

    .. note:: The exact formula structure depends by the graph and on
              its topological order, which is determined by the
              ``enumerate_vertices(D)``.

    Parameters
    ----------
    D : a directed acyclic graph
        it should be a directed acyclic graph.
    nstones : int
       the number of stones.

    Raises
    ------
    ValueError
       if :math:`D` is not a directed acyclic graph
    
    ValueError
       if the number of stones is negative

    References
    ----------
    .. [1] M. Alekhnovich, J. Johannsen, T. Pitassi and A. Urquhart
    	   An Exponential Separation between Regular and General Resolution.
           Theory of Computing (2007)
    .. [2] R. Raz and P. McKenzie
           Separation of the monotone NC hierarchy.
           Combinatorica (1999)

    """
    if not is_dag(D):
        raise ValueError(
            "Stone formulas are defined only for directed acyclic graphs.")

    if nstones < 0:
        raise ValueError("There must be at least one stone.")

    cnf = CNF()

    if hasattr(D, 'name'):
        cnf.header = "Stone formula of: " + D.name + "\nwith " + str(
            nstones) + " stones\n" + cnf.header
    else:
        cnf.header = "Stone formula with " + str(
            nstones) + " stones\n" + cnf.header

    # Add variables in the appropriate order
    vertices = enumerate_vertices(D)
    position = dict((v, i) for (i, v) in enumerate(vertices))
    stones = list(range(1, nstones + 1))

    # Caching variable names
    color_vn = {}
    stone_vn = {}

    # Stones->Vertices variables
    for v in vertices:
        for j in stones:
            stone_vn[(v, j)] = "P_{{{0},{1}}}".format(v, j)
            cnf.add_variable(stone_vn[(v, j)],
                             description="Stone ${1}$ on vertex ${0}$".format(
                                 v, j))

    # Color variables
    for j in stones:
        color_vn[j] = "R_{{{0}}}".format(j)
        cnf.add_variable(color_vn[j],
                         description="Stone ${}$ is red".format(j))

    # Each vertex has some stone
    for v in vertices:
        cnf.add_clause_unsafe([(True, stone_vn[(v, j)]) for j in stones])

    # If predecessors have red stones, the sink must have a red stone
    for v in vertices:
        for j in stones:
            pred = sorted(D.predecessors(v), key=lambda x: position[x])
            for stones_tuple in product([s for s in stones if s != j],
                                        repeat=len(pred)):
                cnf.add_clause_unsafe([(False, stone_vn[(p, s)])
                                       for (p, s) in zip(pred, stones_tuple)] +
                                      [(False, stone_vn[(v, j)])] +
                                      [(False, color_vn[s])
                                       for s in _uniqify_list(stones_tuple)] +
                                      [(True, color_vn[j])])

        if D.out_degree(v) == 0:  #the sink
            for j in stones:
                cnf.add_clause_unsafe([(False, stone_vn[(v, j)]),
                                       (False, color_vn[j])])

    return cnf
Exemple #18
0
def DominatingSet(G,d, alternative = False):
    r"""Generates the clauses for a dominating set for G of size <= d

    The formula encodes the fact that the graph :math:`G` has
    a dominating set of size :math:`d`. This means that it is possible
    to pick at most :math:`d` vertices in :math:`V(G)` so that all remaining
    vertices have distance at most one from the selected ones.

    Parameters
    ----------
    G : networkx.Graph
        a simple undirected graph
    d : a positive int
        the size limit for the dominating set
    alternative : bool
        use an alternative construction that 
        is provably hard from resolution proofs.

    Returns
    -------
    CNF
       the CNF encoding for dominating of size :math:`\leq d` for graph :math:`G`

    """
    F=CNF()

    if not isinstance(d,int) or d<1:
        ValueError("Parameter \"d\" is expected to be a positive integer")
    
    # Describe the formula
    name="{}-dominating set".format(d)
    
    if hasattr(G,'name'):
        F.header=name+" of graph:\n"+G.name+".\n\n"+F.header
    else:
        F.header=name+".\n\n"+F.header

    # Fix the vertex order
    V=enumerate_vertices(G)
    

    def D(v):
        return "x_{{{0}}}".format(v)

    def M(v,i):
        return "g_{{{0},{1}}}".format(v,i)

    def N(v):
        return tuple(sorted([ v ] + [ u for u in G.neighbors(v) ]))
    
    # Create variables
    for v in V:
        F.add_variable(D(v))
    for i,v in product(range(1,d+1),V):
        F.add_variable(M(v,i))
    
    # No two (active) vertices map to the same index
    if alternative:
        for u,v in combinations(V,2):
            for i in range(1,d+1):
                F.add_clause( [ (False,D(u)),(False,D(v)), (False,M(u,i)), (False,M(v,i))    ])
    else:
        for i in range(1,d+1):
            for c in CNF.less_or_equal_constraint([M(v,i) for v in V],1):
                F.add_clause(c)
                
    # (Active) Vertices in the sequence are not repeated
    if alternative:
        for v in V:
            for i,j in combinations(range(1,d+1),2):
                F.add_clause([(False,D(v)),(False,M(v,i)),(False,M(v,j))])
    else:
        for i,j in combinations_with_replacement(range(1,d+1),2):
            i,j = min(i,j),max(i,j)
            for u,v in combinations(V,2):
                u,v = max(u,v),min(u,v)
                F.add_clause([(False,M(u,i)),(False,M(v,j))])

    # D(v) = M(v,1) or M(v,2) or ... or M(v,d)        
    if not alternative:
        for i,v in product(range(1,d+1),V):
            F.add_clause([(False,M(v,i)),(True,D(v))])
    for v in V:
        F.add_clause([(False,D(v))] + [(True,M(v,i)) for i in range(1,d+1)])
    
        
    # Every neighborhood must have a true D variable
    neighborhoods = sorted( set(N(v) for v in V) )
    for N in neighborhoods:
        F.add_clause([ (True,D(v)) for v in N])
        
    return F
Exemple #19
0
def SubgraphFormula(graph,templates, symmetric=False):
    """Test whether a graph contains one of the templates.

    Given a graph :math:`G` and a sequence of template graphs
    :math:`H_1`, :math:`H_2`, ..., :math:`H_t`, the CNF formula claims
    that :math:`G` contains an isomorphic copy of at least one of the
    template graphs.

    E.g. when :math:`H_1` is the complete graph of :math:`k` vertices
    and it is the only template, the formula claims that :math:`G`
    contains a :math:`k`-clique.

    Parameters
    ----------
    graph : networkx.Graph
        a simple graph

    templates : list-like object
        a sequence of graphs.

    symmetric:
        all template graphs are symmetric wrt permutations of
        vertices. This allows some optimization in the search space of
        the assignments.

    induce: 
        force the subgraph to be induced (i.e. no additional edges are allowed)


    Returns
    -------
    a CNF object

    """

    F=CNF()

    
    # One of the templates is chosen to be the subgraph
    if len(templates)==0:
        return F
    elif len(templates)==1:
        selectors=[]
    elif len(templates)==2:
        selectors=['c']
    else:
        selectors=['c_{{{}}}'.format(i) for i in range(len(templates))]

    for s in selectors:
        F.add_variable(s)
        
    if len(selectors)>1:
        for cls in F.equal_to_constraint(selectors,1):
            F.add_clause( cls , strict=True )

    # comment the formula accordingly
    if len(selectors)>1:
        F.header=dedent("""\
                 CNF encoding of the claim that a graph contains one among
                 a family of {0} possible subgraphs.
                 """.format(len(templates))) + F.header
    else:
        F.header=dedent("""\
                 CNF encoding of the claim that a graph contains an induced
                 copy of a subgraph.
                 """.format(len(templates)))  + F.header

    # A subgraph is chosen
    N=graph.order()
    k=max([s.order() for s in templates])

    var_name = lambda i,j: "S_{{{0},{1}}}".format(i,j)

    for i,j in product(range(k),range(N)):
        F.add_variable( var_name(i,j) )

    if symmetric:
        gencls = F.unary_mapping(range(k),range(N),var_name=var_name,
                                 functional=True,injective=True,
                                 nondecreasing=True)
    else:
        gencls = F.unary_mapping(range(k),range(N),var_name=var_name,
                                 functional=True,injective=True)
        
    for cls in gencls:
        F.add_clause( cls, strict=True )
        
    # The selectors choose a template subgraph.  A mapping must map
    # edges to edges and non-edges to non-edges for the active
    # template.

    if len(templates)==1:

        activation_prefixes = [[]]

    elif len(templates)==2:

        activation_prefixes = [[(True,selectors[0])],[(False,selectors[0])]]

    else:
        activation_prefixes = [[(True,v)] for v in selectors]


    # maps must preserve the structure of the template graph
    gV = enumerate_vertices(graph)

    for i in range(len(templates)):

        k  = templates[i].order()
        tV = enumerate_vertices(templates[i])

        if symmetric:
            # Using non-decreasing map to represent a subset
            localmaps = product(combinations(range(k),2),
                                combinations(range(N),2))
        else:
            localmaps = product(combinations(range(k),2),
                                permutations(range(N),2))
       

        for (i1,i2),(j1,j2) in localmaps:

            # check if this mapping is compatible
            tedge=templates[i].has_edge(tV[i1],tV[i2])
            gedge=graph.has_edge(gV[j1],gV[j2])
            if tedge == gedge:
                continue

            # if it is not, add the corresponding
            F.add_clause(activation_prefixes[i] + \
                         [(False,var_name(i1,j1)),
                          (False,var_name(i2,j2)) ],strict=True)

    return F
Exemple #20
0
def SparseStoneFormula(D,B):
    """Sparse Stone formulas

    This is a variant of the :py:func:`StoneFormula`. See that for
    a description of the formula. This variant is such that each
    vertex has only a small selection of which stone can go to that
    vertex. In particular which stones are allowed on each vertex is
    specified by a bipartite graph :math:`B` on which the left
    vertices represent the vertices of DAG :math:`D` and the right
    vertices are the stones. 

    If a vertex of :math:`D` correspond to the left vertex :math:`v`
    in :math:`B`, then its neighbors describe which stones are allowed
    for it.

    The vertices in :math:`D` do not need to have the same name as the
    one on the left side of :math:`B`. It is only important that the
    number of vertices in :math:`D` is the same as the vertices in the
    left side of :math:`B`.

    In that case the element at position :math:`i` in the ordered
    sequence ``enumerate_vertices(D)`` corresponds to the element of
    rank :math:`i` in the sequence of left side vertices of
    :math:`B` according to the output of ``Left, Right =
    bipartite_sets(B)``.

    Standard :py:func:`StoneFormula` is essentially equivalent to
    a sparse stone formula where :math:`B` is the complete graph.

    Parameters
    ----------
    D : a directed acyclic graph
        it should be a directed acyclic graph.
    B : bipartite graph

    Raises
    ------
    ValueError
       if :math:`D` is not a directed acyclic graph
    
    ValueError
       if :math:`B` is not a bipartite graph

    ValueError
       when size differs between :math:`D` and the left side of
       :math:`B`

    See Also
    --------
    StoneFormula

    """
    if not is_dag(D):
        raise ValueError("Stone formulas are defined only for directed acyclic graphs.")

    if not has_bipartition(B):
        raise ValueError("Vertices to stones mapping must be specified with a bipartite graph")
    
    Left, Right = bipartite_sets(B)
    nstones = len(Right)

    if len(Left) != D.order():
        raise ValueError("Formula requires the bipartite left side to match #vertices of the DAG.")
     
    cnf = CNF()
    
    if hasattr(D, 'name'):
        cnf.header = "Sparse Stone formula of: " + D.name + "\nwith " + str(nstones) + " stones\n" + cnf.header
    else:
        cnf.header = "Sparse Stone formula with " + str(nstones) + " stones\n" + cnf.header

    # add variables in the appropriate order
    vertices=enumerate_vertices(D)
    stones=range(1,nstones+1)
    
    mapping = cnf.unary_mapping(vertices,stones,sparsity_pattern=B)

    stone_formula_helper(cnf,D,mapping)
    return cnf
Exemple #21
0
def stone_formula_helper(F,D,mapping):
    """Stones formulas helper

    Builds the clauses of a stone formula given the mapping object
    between stones and vertices of the DAG. THis is not supposed to be
    called by user code, and indeed this function assumes the following facts.

    - :math:`D` is equal to `mapping.domain()`
    - :math:`D` is a DAG

    Parameters
    ----------
    F : CNF
        the CNF which will contain the clauses of the stone formula

    D : a directed acyclic graph
        it should be a directed acyclic graph.

    mapping : unary_mapping object
       mapping between stones and graph vertices


    See Also
    --------
    StoneFormula : the classic stone formula
    SparseStoneFormula : stone formula with sparse mapping
    """

    # add variables in the appropriate order
    vertices=enumerate_vertices(D)

    # Stones->Vertices variables
    for v in mapping.variables():
        F.add_variable(v)

    # Color variables
    for stone in mapping.range():
        F.add_variable("R_{{{0}}}".format(stone),
                       description="Stone ${}$ is red".format(stone))
    
    # Each vertex has some stone
    for cls in mapping.clauses():
        F.add_clause_unsafe(cls)
        
    # If predecessors have red stones, the sink must have a red stone
    for v in vertices:
        for j in mapping.images(v):
            pred=sorted(D.predecessors(v),key=lambda x:mapping.RankDomain[x])
            for stones_tuple in product(*tuple( [s for s in mapping.images(v) if s!=j  ] for v in pred)):
                F.add_clause([(False, mapping.var_name(p,s)) for (p,s) in zip(pred,stones_tuple)] +
                               [(False, mapping.var_name(v,j))] +
                               [(False, "R_{{{0}}}".format(s)) for s in _uniqify_list(stones_tuple)] +
                               [(True,  "R_{{{0}}}".format(j))],
                               strict=True)
        
        if D.out_degree(v)==0: #the sink
            for j in mapping.images(v):
                F.add_clause([ (False, mapping.var_name(v,j)),
                               (False,"R_{{{0}}}".format(j))],
                               strict = True)

    return F
Exemple #22
0
def GraphOrderingPrinciple(graph,total=False,smart=False,plant=False,knuth=0):
    """Generates the clauses for graph ordering principle

    Arguments:
    - `graph` : undirected graph
    - `total` : add totality axioms (i.e. "x < y" or "x > y")
    - `smart` : "x < y" and "x > y" are represented by a single variable (implies `total`)
    - `plant` : allow last element to be minimum (and could make the formula SAT)
    - `knuth` : Don Knuth variants 2 or 3 of the formula (anything else suppress it)
    """
    gop = CNF()

    # Describe the formula
    if total or smart:
        name = "Total graph ordering principle"
    else:
        name = "Ordering principle"

    if smart:
        name = name + "(compact representation)"

    if hasattr(graph, 'name'):
        gop.header = name+"\n on graph "+graph.name+".\n\n"+gop.header
    else:
        gop.header = name+".\n\n"+gop.header


    # Fix the vertex order
    V = enumerate_vertices(graph)

    # Add variables
    iterator = combinations if smart else permutations
    for v1,v2 in iterator(V,2):
        gop.add_variable(varname(v1,v2))

    #
    # Non minimality axioms
    #

    # Clause is generated in such a way that if totality is enforces,
    # every pair occurs with a specific orientation.
    # Allow minimum on last vertex if 'plant' options.

    for med in xrange(len(V) - (plant and 1)):
        clause = []
        for lo in xrange(med):
            if graph.has_edge(V[med], V[lo]):
                clause += [(True, varname(V[lo], V[med]))]
        for hi in xrange(med+1, len(V)):
            if not graph.has_edge(V[med], V[hi]):
                continue
            elif smart:
                clause += [(False, varname(V[med], V[hi]))]
            else:
                clause += [(True, varname(V[hi], V[med]))]
        gop.add_clause(clause, strict=True)

    #
    # Transitivity axiom
    #

    if len(V) >= 3:
        if smart:
            # Optimized version if smart representation of totality is used
            for (v1, v2, v3) in combinations(V, 3):

                gop.add_clause([(True,  varname(v1, v2)),
                                (True,  varname(v2, v3)),
                                (False, varname(v1, v3))],
                               strict=True)
                
                gop.add_clause([(False, varname(v1, v2)),
                                (False, varname(v2, v3)),
                                (True,  varname(v1, v3))],
                               strict=True)

        elif total:
            # With totality we still need just two axiom per triangle
            for (v1, v2, v3) in combinations(V, 3):
                
                gop.add_clause([(False, varname(v1, v2)),
                                (False, varname(v2, v3)),
                                (False, varname(v3, v1))],
                               strict=True)

                gop.add_clause([(False, varname(v1, v3)),
                                (False, varname(v3, v2)),
                                (False, varname(v2, v1))],
                               strict=True)

        else:
            for (v1, v2, v3) in permutations(V, 3):

                # knuth variants will reduce the number of
                # transitivity axioms
                if knuth == 2 and ((v2 < v1) or (v2 < v3)):
                    continue
                if knuth == 3 and ((v3 < v1) or (v3 < v2)):
                    continue

                gop.add_clause([(False, varname(v1, v2)),
                                (False, varname(v2, v3)),
                                (True,  varname(v1, v3))],
                               strict=True)

    if not smart:
        # Antisymmetry axioms (useless for 'smart' representation)
        for (v1, v2) in combinations(V, 2):
            gop.add_clause([(False, varname(v1, v2)),
                            (False, varname(v2, v1))],
                           strict=True)

        # Totality axioms (useless for 'smart' representation)
        if total:
            for (v1, v2) in combinations(V, 2):
                gop.add_clause([(True, varname(v1, v2)),
                                (True, varname(v2, v1))],
                               strict=True)

    return gop
Exemple #23
0
def StoneFormula(D,nstones):
    """Stone formulas

    The stone formulas have been introduced in [2]_ and generalized in
    [1]_. They are one of the classic examples that separate regular
    resolutions from general resolution [1]_.

    A \"Stones formula\" from a directed acyclic graph :math:`D`
    claims that each vertex of the graph is associated with one on
    :math:`s` stones (not necessarily in an injective way).
    In particular for each vertex :math:`v` in :math:`V(D)` and each
    stone :math:`j` we have a variable :math:`P_{v,j}` that claims
    that stone :math:`j` is associated to vertex :math:`v`.

    Each stone can be either red or blue, and not both.
    The propositional variable :math:`R_j` if true when the stone
    :math:`j` is red and false otherwise.

    The clauses of the formula encode the following constraints.
    If a stone is on a source vertex (i.e. a vertex with no incoming
    edges), then it must be red. If all stones on the predecessors of
    a vertex are red, then the stone of the vertex itself must be red.

    The formula furthermore enforces that the stones on the sinks
    (i.e. vertices with no outgoing edges) are blue.

    .. note:: The exact formula structure depends by the graph and on
              its topological order, which is determined by the
              ``enumerate_vertices(D)``.

    Parameters
    ----------
    D : a directed acyclic graph
        it should be a directed acyclic graph.
    nstones : int
       the number of stones.

    Raises
    ------
    ValueError
       if :math:`D` is not a directed acyclic graph
    
    ValueError
       if the number of stones is negative

    References
    ----------
    .. [1] M. Alekhnovich, J. Johannsen, T. Pitassi and A. Urquhart
    	   An Exponential Separation between Regular and General Resolution.
           Theory of Computing (2007)
    .. [2] R. Raz and P. McKenzie
           Separation of the monotone NC hierarchy.
           Combinatorica (1999)

    """
    if not is_dag(D):
        raise ValueError("Stone formulas are defined only for directed acyclic graphs.")
    
    if nstones<0:
        raise ValueError("There must be at least one stone.")

    cnf = CNF()

    if hasattr(D, 'name'):
        cnf.header = "Stone formula of: " + D.name + "\nwith " + str(nstones) + " stones\n" + cnf.header
    else:
        cnf.header = "Stone formula with " + str(nstones) + " stones\n" + cnf.header

    # Add variables in the appropriate order
    vertices=enumerate_vertices(D)
    position=dict((v,i) for (i,v) in enumerate(vertices))
    stones=range(1,nstones+1)

    # Caching variable names
    color_vn = {}
    stone_vn = {}
    
    # Stones->Vertices variables
    for v in vertices:
        for j in stones:
            stone_vn[(v,j)] = "P_{{{0},{1}}}".format(v,j) 
            cnf.add_variable(stone_vn[(v,j)],
                             description="Stone ${1}$ on vertex ${0}$".format(v,j))

    # Color variables
    for j in stones:
        color_vn[j] = "R_{{{0}}}".format(j)
        cnf.add_variable(color_vn[j],
                         description="Stone ${}$ is red".format(j))
    
    # Each vertex has some stone
    for v in vertices:
        cnf.add_clause_unsafe([(True,stone_vn[(v,j)]) for j in stones])
        
    # If predecessors have red stones, the sink must have a red stone
    for v in vertices:
        for j in stones:
            pred=sorted(D.predecessors(v),key=lambda x:position[x])
            for stones_tuple in product([s for s in stones if s!=j],repeat=len(pred)):
                cnf.add_clause_unsafe([(False, stone_vn[(p,s)]) for (p,s) in zip(pred,stones_tuple)] +
                                      [(False, stone_vn[(v,j)])] +
                                      [(False, color_vn[s]) for s in _uniqify_list(stones_tuple)] +
                                      [(True,  color_vn[j])])
        
        if D.out_degree(v)==0: #the sink
            for j in stones:
                cnf.add_clause_unsafe([ (False,stone_vn[(v,j)]), (False,color_vn[j])])

    return cnf
Exemple #24
0
def DominatingSet(G, d, alternative=False):
    r"""Generates the clauses for a dominating set for G of size <= d

    The formula encodes the fact that the graph :math:`G` has
    a dominating set of size :math:`d`. This means that it is possible
    to pick at most :math:`d` vertices in :math:`V(G)` so that all remaining
    vertices have distance at most one from the selected ones.

    Parameters
    ----------
    G : networkx.Graph
        a simple undirected graph
    d : a positive int
        the size limit for the dominating set
    alternative : bool
        use an alternative construction that 
        is provably hard from resolution proofs.

    Returns
    -------
    CNF
       the CNF encoding for dominating of size :math:`\leq d` for graph :math:`G`

    """
    F = CNF()

    if not isinstance(d, int) or d < 1:
        ValueError("Parameter \"d\" is expected to be a positive integer")

    # Describe the formula
    name = "{}-dominating set".format(d)

    if hasattr(G, 'name'):
        F.header = name + " of graph:\n" + G.name + ".\n\n" + F.header
    else:
        F.header = name + ".\n\n" + F.header

    # Fix the vertex order
    V = enumerate_vertices(G)

    def D(v):
        return "x_{{{0}}}".format(v)

    def M(v, i):
        return "g_{{{0},{1}}}".format(v, i)

    def N(v):
        return tuple(sorted([v] + [u for u in G.neighbors(v)]))

    # Create variables
    for v in V:
        F.add_variable(D(v))
    for i, v in product(list(range(1, d + 1)), V):
        F.add_variable(M(v, i))

    # No two (active) vertices map to the same index
    if alternative:
        for u, v in combinations(V, 2):
            for i in range(1, d + 1):
                F.add_clause([(False, D(u)), (False, D(v)), (False, M(u, i)),
                              (False, M(v, i))])
    else:
        for i in range(1, d + 1):
            for c in CNF.less_or_equal_constraint([M(v, i) for v in V], 1):
                F.add_clause(c)

    # (Active) Vertices in the sequence are not repeated
    if alternative:
        for v in V:
            for i, j in combinations(list(range(1, d + 1)), 2):
                F.add_clause([(False, D(v)), (False, M(v, i)), (False, M(v,
                                                                         j))])
    else:
        for i, j in combinations_with_replacement(list(range(1, d + 1)), 2):
            i, j = min(i, j), max(i, j)
            for u, v in combinations(V, 2):
                u, v = max(u, v), min(u, v)
                F.add_clause([(False, M(u, i)), (False, M(v, j))])

    # D(v) = M(v,1) or M(v,2) or ... or M(v,d)
    if not alternative:
        for i, v in product(list(range(1, d + 1)), V):
            F.add_clause([(False, M(v, i)), (True, D(v))])
    for v in V:
        F.add_clause([(False, D(v))] + [(True, M(v, i))
                                        for i in range(1, d + 1)])

    # Every neighborhood must have a true D variable
    neighborhoods = sorted(set(N(v) for v in V))
    for N in neighborhoods:
        F.add_clause([(True, D(v)) for v in N])

    return F
Exemple #25
0
def VertexCover(G,k, alternative = False):
    r"""Generates the clauses for a vertex cover for G of size <= k

    Parameters
    ----------
    G : networkx.Graph
        a simple undirected graph
    k : a positive int
        the size limit for the vertex cover

    Returns
    -------
    CNF
       the CNF encoding for vertex cover of size :math:`\leq k` for graph :math:`G`

    """
    F=CNF()

    if not isinstance(k,int) or k<1:
        ValueError("Parameter \"k\" is expected to be a positive integer")

    # Describe the formula
    name="{}-vertex cover".format(k)

    if hasattr(G,'name'):
        F.header=name+" of graph:\n"+G.name+".\n\n"+F.header
    else:
        F.header=name+".\n\n"+F.header

    # Fix the vertex order
    V=enumerate_vertices(G)
    E=enumerate_edges(G)

    def D(v):
        return "x_{{{0}}}".format(v)

    def M(v,i):
        return "g_{{{0},{1}}}".format(v,i)

    def N(v):
        return tuple(sorted([ v ] + [ u for u in G.neighbors(v) ]))

    # Create variables
    for v in V:
        F.add_variable(D(v))
    for i,v in product(range(1,k+1),V):
        F.add_variable(M(v,i))

    # No two (active) vertices map to the same index
    for i in range(1,k+1):
        for c in CNF.less_or_equal_constraint([M(v,i) for v in V],1):
            F.add_clause(c)

    # (Active) Vertices in the sequence are not repeated
    for i,j in combinations_with_replacement(range(1,k+1),2):
        i,j = min(i,j),max(i,j)
        for u,v in combinations(V,2):
            u,v = max(u,v),min(u,v)
            F.add_clause([(False,M(u,i)),(False,M(v,j))])

    # D(v) = M(v,1) or M(v,2) or ... or M(v,k)
    for i,v in product(range(1,k+1),V):
        F.add_clause([(False,M(v,i)),(True,D(v))])
    for v in V:
        F.add_clause([(False,D(v))] + [(True,M(v,i)) for i in range(1,k+1)])

    # Every neighborhood must have a true D variable
    for v1,v2 in E:
        F.add_clause([(True,D(v1)), (True,D(v2))])

    return F
Exemple #26
0
def SparseStoneFormula(D, B):
    """Sparse Stone formulas

    This is a variant of the :py:func:`StoneFormula`. See that for
    a description of the formula. This variant is such that each
    vertex has only a small selection of which stone can go to that
    vertex. In particular which stones are allowed on each vertex is
    specified by a bipartite graph :math:`B` on which the left
    vertices represent the vertices of DAG :math:`D` and the right
    vertices are the stones. 

    If a vertex of :math:`D` correspond to the left vertex :math:`v`
    in :math:`B`, then its neighbors describe which stones are allowed
    for it.

    The vertices in :math:`D` do not need to have the same name as the
    one on the left side of :math:`B`. It is only important that the
    number of vertices in :math:`D` is the same as the vertices in the
    left side of :math:`B`.

    In that case the element at position :math:`i` in the ordered
    sequence ``enumerate_vertices(D)`` corresponds to the element of
    rank :math:`i` in the sequence of left side vertices of
    :math:`B` according to the output of ``Left, Right =
    bipartite_sets(B)``.

    Standard :py:func:`StoneFormula` is essentially equivalent to
    a sparse stone formula where :math:`B` is the complete graph.

    Parameters
    ----------
    D : a directed acyclic graph
        it should be a directed acyclic graph.
    B : bipartite graph

    Raises
    ------
    ValueError
       if :math:`D` is not a directed acyclic graph
    
    ValueError
       if :math:`B` is not a bipartite graph

    ValueError
       when size differs between :math:`D` and the left side of
       :math:`B`

    See Also
    --------
    StoneFormula

    """
    if not is_dag(D):
        raise ValueError(
            "Stone formulas are defined only for directed acyclic graphs.")

    if not has_bipartition(B):
        raise ValueError(
            "Vertices to stones mapping must be specified with a bipartite graph"
        )

    Left, Right = bipartite_sets(B)
    nstones = len(Right)

    if len(Left) != D.order():
        raise ValueError(
            "Formula requires the bipartite left side to match #vertices of the DAG."
        )

    cnf = CNF()

    if hasattr(D, 'name'):
        cnf.header = "Sparse Stone formula of: " + D.name + "\nwith " + str(
            nstones) + " stones\n" + cnf.header
    else:
        cnf.header = "Sparse Stone formula with " + str(
            nstones) + " stones\n" + cnf.header

    # add variables in the appropriate order
    vertices = enumerate_vertices(D)
    stones = list(range(1, nstones + 1))

    mapping = cnf.unary_mapping(vertices, stones, sparsity_pattern=B)

    stone_formula_helper(cnf, D, mapping)
    return cnf
Exemple #27
0
def SubgraphFormula(graph,templates):
    """Test whether a graph contains one of the templates.

    Given a graph :math:`G` and a sequence of template graphs
    :math:`H_1`, :math:`H_2`, ..., :math:`H_t`, the CNF formula claims
    that :math:`G` contains an isomorphic copy of at least one of the
    template graphs.

    E.g. when :math:`H_1` is the complete graph of :math:`k` vertices
    and it is the only template, the formula claims that :math:`G`
    contains a :math:`k`-clique.

    Parameters
    ----------
    graph : networkx.Graph
        a simple graph
    templates : list-like object
        a sequence of graphs.

    Returns
    -------
    a CNF object
    """

    F=CNF()

    # One of the templates is chosen to be the subgraph
    if len(templates)==0:
        return F
    elif len(templates)==1:
        selectors=[]
    elif len(templates)==2:
        selectors=['c']
    else:
        selectors=['c_{{{}}}'.format(i) for i in range(len(templates))]

    for s in selectors:
        F.add_variable(s)
        
    if len(selectors)>1:

        # Exactly one of the graphs must be selected as subgraph
        F.add_clause([(True,v) for v in selectors],strict=True)

        for (a,b) in combinations(selectors):
            F.add_clause( [ (False,a), (False,b) ], strict=True )

    # comment the formula accordingly
    if len(selectors)>1:
        F.header=dedent("""\
                 CNF encoding of the claim that a graph contains one among
                 a family of {0} possible subgraphs.
                 """.format(len(templates))) + F.header
    else:
        F.header=dedent("""\
                 CNF encoding of the claim that a graph contains an induced
                 copy of a subgraph.
                 """.format(len(templates)))  + F.header

    # A subgraph is chosen
    N=graph.order()
    k=max([s.order() for s in templates])

    for i,j in product(range(k),range(N)):
        F.add_variable("S_{{{0},{1}}}".format(i,j))

    # each vertex has an image...
    for i in range(k):
        F.add_clause([(True,"S_{{{0},{1}}}".format(i,j)) for j in range(N)],strict=True)

    # ...and exactly one
    for i,(a,b) in product(range(k),combinations(range(N),2)):
        F.add_clause([(False,"S_{{{0},{1}}}".format(i,a)),
                      (False,"S_{{{0},{1}}}".format(i,b))  ], strict = True)

 
    # Mapping is strictly monotone increasing (so it is also injective)
    localmaps = product(combinations(range(k),2),
                        combinations_with_replacement(range(N),2))

    for (a,b),(i,j) in localmaps:
        F.add_clause([(False,"S_{{{0},{1}}}".format(min(a,b),max(i,j))),
                      (False,"S_{{{0},{1}}}".format(max(a,b),min(i,j)))  ],strict=True)


    # The selectors choose a template subgraph.  A mapping must map
    # edges to edges and non-edges to non-edges for the active
    # template.

    if len(templates)==1:

        activation_prefixes = [[]]

    elif len(templates)==2:

        activation_prefixes = [[(True,selectors[0])],[(False,selectors[0])]]

    else:
        activation_prefixes = [[(True,v)] for v in selectors]


    # maps must preserve the structure of the template graph
    gV = enumerate_vertices(graph)

    for i in range(len(templates)):


        k  = templates[i].order()
        tV = enumerate_vertices(templates[i])

        localmaps = product(combinations(range(k),2),
                            combinations(range(N),2))


        for (i1,i2),(j1,j2) in localmaps:

            # check if this mapping is compatible
            tedge=templates[i].has_edge(tV[i1],tV[i2])
            gedge=graph.has_edge(gV[j1],gV[j2])
            if tedge == gedge: continue

            # if it is not, add the corresponding
            F.add_clause(activation_prefixes[i] + \
                         [(False,"S_{{{0},{1}}}".format(min(i1,i2),min(j1,j2))),
                          (False,"S_{{{0},{1}}}".format(max(i1,i2),max(j1,j2))) ],strict=True)

    return F
Exemple #28
0
def GraphColoringFormula(G,colors,functional=True):
    """Generates the clauses for colorability formula

    The formula encodes the fact that the graph :math:`G` has a coloring
    with color set ``colors``. This means that it is possible to
    assign one among the elements in ``colors``to that each vertex of
    the graph such that no two adjacent vertices get the same color.

    Parameters
    ----------
    G : networkx.Graph
        a simple undirected graph
    colors : list or positive int
        a list of colors or a number of colors

    Returns
    -------
    CNF
       the CNF encoding of the coloring problem on graph ``G``

    """
    col=CNF()
    col.mode_strict()

    if isinstance(colors,int) and colors>=0:
        colors = range(1,colors+1)
    
    if not isinstance(list, collections.Iterable):
        ValueError("Parameter \"colors\" is expected to be a iterable")
    
    # Describe the formula
    name="graph colorability"
    
    if hasattr(G,'name'):
        col.header=name+" of graph:\n"+G.name+".\n\n"+col.header
    else:
        col.header=name+".\n\n"+col.header

    # Fix the vertex order
    V=enumerate_vertices(G)

    # Create the variables
    for vertex in V:
        for color in colors:
            col.add_variable('x_{{{0},{1}}}'.format(vertex,color))
        
    # Each vertex has a color
    for vertex in V:
        clause = []
        for color in colors:
            clause += [(True,'x_{{{0},{1}}}'.format(vertex,color))]
        col.add_clause(clause)
        
        # unique color per vertex
        if functional:
            for (c1,c2) in combinations(colors,2):
                col.add_clause([
                    (False,'x_{{{0},{1}}}'.format(vertex,c1)),
                    (False,'x_{{{0},{1}}}'.format(vertex,c2))])

    # This is a legal coloring
    for (v1,v2) in enumerate_edges(G):
        for c in colors:
            col.add_clause([
                (False,'x_{{{0},{1}}}'.format(v1,c)),
                (False,'x_{{{0},{1}}}'.format(v2,c))])
            
    return col
Exemple #29
0
def stone_formula_helper(F, D, mapping):
    """Stones formulas helper

    Builds the clauses of a stone formula given the mapping object
    between stones and vertices of the DAG. THis is not supposed to be
    called by user code, and indeed this function assumes the following facts.

    - :math:`D` is equal to `mapping.domain()`
    - :math:`D` is a DAG

    Parameters
    ----------
    F : CNF
        the CNF which will contain the clauses of the stone formula

    D : a directed acyclic graph
        it should be a directed acyclic graph.

    mapping : unary_mapping object
       mapping between stones and graph vertices


    See Also
    --------
    StoneFormula : the classic stone formula
    SparseStoneFormula : stone formula with sparse mapping
    """

    # add variables in the appropriate order
    vertices = enumerate_vertices(D)

    # Stones->Vertices variables
    for v in mapping.variables():
        F.add_variable(v)

    # Color variables
    for stone in mapping.range():
        F.add_variable("R_{{{0}}}".format(stone),
                       description="Stone ${}$ is red".format(stone))

    # Each vertex has some stone
    for cls in mapping.clauses():
        F.add_clause_unsafe(cls)

    # If predecessors have red stones, the sink must have a red stone
    for v in vertices:
        for j in mapping.images(v):
            pred = sorted(D.predecessors(v),
                          key=lambda x: mapping.RankDomain[x])
            for stones_tuple in product(*tuple(
                [s for s in mapping.images(v) if s != j] for v in pred)):
                F.add_clause([(False, mapping.var_name(p, s))
                              for (p, s) in zip(pred, stones_tuple)] +
                             [(False, mapping.var_name(v, j))] +
                             [(False, "R_{{{0}}}".format(s))
                              for s in _uniqify_list(stones_tuple)] +
                             [(True, "R_{{{0}}}".format(j))],
                             strict=True)

        if D.out_degree(v) == 0:  #the sink
            for j in mapping.images(v):
                F.add_clause([(False, mapping.var_name(v, j)),
                              (False, "R_{{{0}}}".format(j))],
                             strict=True)

    return F
Exemple #30
0
def SubgraphFormula(graph, templates, symmetric=False):
    """Test whether a graph contains one of the templates.

    Given a graph :math:`G` and a sequence of template graphs
    :math:`H_1`, :math:`H_2`, ..., :math:`H_t`, the CNF formula claims
    that :math:`G` contains an isomorphic copy of at least one of the
    template graphs.

    E.g. when :math:`H_1` is the complete graph of :math:`k` vertices
    and it is the only template, the formula claims that :math:`G`
    contains a :math:`k`-clique.

    Parameters
    ----------
    graph : networkx.Graph
        a simple graph

    templates : list-like object
        a sequence of graphs.

    symmetric:
        all template graphs are symmetric wrt permutations of
        vertices. This allows some optimization in the search space of
        the assignments.

    induce: 
        force the subgraph to be induced (i.e. no additional edges are allowed)


    Returns
    -------
    a CNF object

    """

    F = CNF()

    # One of the templates is chosen to be the subgraph
    if len(templates) == 0:
        return F
    elif len(templates) == 1:
        selectors = []
    elif len(templates) == 2:
        selectors = ['c']
    else:
        selectors = ['c_{{{}}}'.format(i) for i in range(len(templates))]

    for s in selectors:
        F.add_variable(s)

    if len(selectors) > 1:
        for cls in F.equal_to_constraint(selectors, 1):
            F.add_clause(cls, strict=True)

    # comment the formula accordingly
    if len(selectors) > 1:
        F.header = dedent("""\
                 CNF encoding of the claim that a graph contains one among
                 a family of {0} possible subgraphs.
                 """.format(len(templates))) + F.header
    else:
        F.header = dedent("""\
                 CNF encoding of the claim that a graph contains an induced
                 copy of a subgraph.
                 """.format(len(templates))) + F.header

    # A subgraph is chosen
    N = graph.order()
    k = max([s.order() for s in templates])

    var_name = lambda i, j: "S_{{{0},{1}}}".format(i, j)

    if symmetric:
        mapping = F.unary_mapping(range(k),
                                  range(N),
                                  var_name=var_name,
                                  functional=True,
                                  injective=True,
                                  nondecreasing=True)
    else:
        mapping = F.unary_mapping(range(k),
                                  range(N),
                                  var_name=var_name,
                                  functional=True,
                                  injective=True,
                                  nondecreasing=False)

    for v in mapping.variables():
        F.add_variable(v)

    for cls in mapping.clauses():
        F.add_clause(cls, strict=True)

    # The selectors choose a template subgraph.  A mapping must map
    # edges to edges and non-edges to non-edges for the active
    # template.

    if len(templates) == 1:

        activation_prefixes = [[]]

    elif len(templates) == 2:

        activation_prefixes = [[(True, selectors[0])], [(False, selectors[0])]]

    else:
        activation_prefixes = [[(True, v)] for v in selectors]

    # maps must preserve the structure of the template graph
    gV = enumerate_vertices(graph)

    for i in range(len(templates)):

        k = templates[i].order()
        tV = enumerate_vertices(templates[i])

        if symmetric:
            # Using non-decreasing map to represent a subset
            localmaps = product(combinations(range(k), 2),
                                combinations(range(N), 2))
        else:
            localmaps = product(combinations(range(k), 2),
                                permutations(range(N), 2))

        for (i1, i2), (j1, j2) in localmaps:

            # check if this mapping is compatible
            tedge = templates[i].has_edge(tV[i1], tV[i2])
            gedge = graph.has_edge(gV[j1], gV[j2])
            if tedge == gedge:
                continue

            # if it is not, add the corresponding
            F.add_clause(activation_prefixes[i] + \
                         [(False,var_name(i1,j1)),
                          (False,var_name(i2,j2)) ],strict=True)

    return F
Exemple #31
0
def TseitinFormula(graph, charges=None, encoding=None):
    """Build a Tseitin formula based on the input graph.

    Odd charge is put on the first vertex by default, unless other
    vertices are is specified in input.

    Arguments:
    - `graph`: input graph
    - `charges': odd or even charge for each vertex
    """
    V = enumerate_vertices(graph)

    if charges == None:
        charges = [1] + [0] * (len(V) - 1)  # odd charge on first vertex
    else:
        charges = [bool(c) for c in charges]  # map to boolean

    if len(charges) < len(V):
        charges = charges + [0] * (len(V) - len(charges)
                                   )  # pad with even charges

    # init formula
    tse = CNF()
    edgename = {}

    for (u, v) in sorted(graph.edges(), key=sorted):
        edgename[(u, v)] = "E_{{{0},{1}}}".format(u, v)
        edgename[(v, u)] = "E_{{{0},{1}}}".format(u, v)
        tse.add_variable(edgename[(u, v)])

    tse.mode_strict()
    # add constraints
    for v, charge in zip(V, charges):

        # produce all clauses and save half of them
        names = [edgename[(u, v)] for u in neighbors(graph, v)]
        if encoding == None:
            tse.add_parity(names, charge)
        else:

            def toArgs(listOfTuples, operator, degree):
                return list(sum(listOfTuples, ())) + [operator, degree]

            terms = list(map(lambda x: (1, x), names))
            w = len(terms)
            k = w // 2

            if encoding == "extendedPBAnyHelper":
                for i in range(k):
                    helper = ("xor_helper", i, v)
                    tse.add_variable(helper)
                    terms.append((2, helper))
            elif encoding == "extendedPBOneHelper":
                helpers = list()
                for i in range(k):
                    helper = ("xor_helper", i, v)
                    helpers.append(helper)
                    tse.add_variable(helper)
                    terms.append(((i + 1) * 2, helper))
                tse.add_linear(*toArgs([(1, x) for x in helpers], "<=", 1))
            elif encoding == "extendedPBExpHelper":
                for i in range(math.ceil(math.log(k, 2)) + 1):
                    helper = ("xor_helper", i, v)
                    tse.add_variable(helper)
                    terms.append((2**i * 2, helper))
            else:
                raise ValueError("Invalid encoding '%s'" % encoding)

            degree = 2 * k + (charge % 2)
            tse.add_linear(*toArgs(terms, "==", degree))

    return tse
Exemple #32
0
def GraphColoringFormula(G, colors, functional=True):
    """Generates the clauses for colorability formula

    The formula encodes the fact that the graph :math:`G` has a coloring
    with color set ``colors``. This means that it is possible to
    assign one among the elements in ``colors``to that each vertex of
    the graph such that no two adjacent vertices get the same color.

    Parameters
    ----------
    G : networkx.Graph
        a simple undirected graph
    colors : list or positive int
        a list of colors or a number of colors

    Returns
    -------
    CNF
       the CNF encoding of the coloring problem on graph ``G``

    """
    col = CNF()

    if isinstance(colors, int) and colors >= 0:
        colors = range(1, colors + 1)

    if not isinstance(list, collections.Iterable):
        ValueError("Parameter \"colors\" is expected to be a iterable")

    # Describe the formula
    name = "graph colorability"

    if hasattr(G, 'name'):
        col.header = name + " of graph:\n" + G.name + ".\n\n" + col.header
    else:
        col.header = name + ".\n\n" + col.header

    # Fix the vertex order
    V = enumerate_vertices(G)

    # Each vertex has a color
    for vertex in V:
        clause = []
        for color in colors:
            clause += [(True, 'x_{{{0},{1}}}'.format(vertex, color))]
        col.add_clause(clause)

        # unique color per vertex
        if functional:
            for (c1, c2) in combinations(colors, 2):
                col.add_clause([(False, 'x_{{{0},{1}}}'.format(vertex, c1)),
                                (False, 'x_{{{0},{1}}}'.format(vertex, c2))],
                               strict=True)

    # This is a legal coloring
    for (v1, v2) in enumerate_edges(G):
        for c in colors:
            col.add_clause([(False, 'x_{{{0},{1}}}'.format(v1, c)),
                            (False, 'x_{{{0},{1}}}'.format(v2, c))],
                           strict=True)

    return col