def stem_1(name , x ): with tf.variable_scope(name) as scope: layer = convolution2d('cnn_0', x, 64, k=1, s=1) layer = convolution2d('cnn_1', layer, 96, k=3, s=1, padding='VALID') layer_ = convolution2d('cnn__0', x, 64, k=1, s=1) layer_ = convolution2d_manual('cnn__1', layer_, 64, k_h=7,k_w=1, s=1) layer_ = convolution2d_manual('cnn__2', layer_, 64, k_h=1,k_w=7,s=1 ) layer_ = convolution2d('cnn__3', layer_, 96, k=3, s=1, padding='VALID') layer_join = tf.concat([layer, layer_], axis=3, name='join') print 'layer_name :','join' print 'layer_shape :',layer_join.get_shape() return layer_join
def resnet_blockC(name, x): with tf.variable_scope(name) as scope: layer = convolution2d('cnn0', x, 192, 1, 1) layer_ = convolution2d('cnn_0', x, 192, 1, 1) layer_ = convolution2d_manual('cnn_1', layer_, 192, k_h=1, k_w=3, s=1) layer_ = convolution2d_manual('cnn_2', layer_, 192, k_h=3, k_w=1, s=1) layer_join = tf.concat([layer, layer_], axis=3, name='join') layer_join = convolution2d('layer_join_cnn', layer_join, 1792, 1, 1) if x.get_shape()[-1] != layer_join.get_shape()[-1]: x=convolution2d('upscale_dimension',x, layer_join.get_shape()[-1] , k=1,s=1) layer_join = tf.add(x, layer_join, 'add') print 'layer_name :', 'join' print 'layer_shape :', layer_join.get_shape() return layer_join
def reductionB(name , x): with tf.variable_scope(name) as scope: layer_ = max_pool('max_pool_0',x, k=3, s=2, padding='VALID') layer__ = convolution2d('cnn__0',x,192, k=1, s=1, padding='SAME') layer__ = convolution2d('cnn__1' ,layer__, 192,k=3 ,s=2 ,padding='VALID') layer___ = convolution2d('cnn___0',x,256, k=1, s=1, padding='SAME') layer___ = convolution2d_manual('cnn___1',layer___,256, k_h=1 , k_w=7, s=1, padding='SAME') layer___ = convolution2d_manual('cnn___2',layer___,320, k_h=7, k_w=1, s=1, padding='SAME') layer___ = convolution2d('cnn___3',layer___, 320,k=3, s=2, padding='VALID') layer_join=tf.concat([layer_ , layer__ , layer___] , axis=3 , name='join') print 'layer_name :','join' print 'layer_shape :',layer_join.get_shape() return layer_join
def blockC(name, x): with tf.variable_scope(name) as scope: layer = avg_pool('avg_pool', x, k=2, s=1) layer = convolution2d('cnn', layer, 256, k=1, s=1) layer_ = convolution2d('cnn_0', x, 256, k=1, s=1) layer__ = convolution2d('cnn__0', x, 384, k=1, s=1) layer__0 = convolution2d_manual('cnn__1_0', layer__, 256, k_h=1, k_w=3, s=1) layer__1 = convolution2d_manual('cnn__1_1', layer__, 256, k_h=3, k_w=1, s=1) layer___ = convolution2d('cnn___0', x, 384, k=1, s=1) layer___ = convolution2d_manual('cnn___1', layer___, 448, k_h=1, k_w=3, s=1) layer___ = convolution2d_manual('cnn___2', layer___, 512, k_h=3, k_w=1, s=1) layer___0 = convolution2d_manual('cnn___3_0', layer___, 256, k_h=3, k_w=1, s=1) layer___1 = convolution2d_manual('cnn___3_1', layer___, 256, k_h=1, k_w=3, s=1) layer_join = tf.concat( [layer, layer_, layer__0, layer__1, layer___0, layer___1], axis=3, name='join') print 'layer_name :', 'join' print 'layer_shape :', layer_join.get_shape() return layer_join
def blockB(name, x): with tf.variable_scope(name) as scope: layer = avg_pool('avg_pool', x, k=2, s=1) layer = convolution2d('cnn', layer, 128, k=1, s=1) layer_ = convolution2d('cnn_0', x, 384, k=1, s=1) layer__ = convolution2d('cnn__0', x, 192, k=1, s=1) layer__ = convolution2d_manual('cnn__1', layer__, 224, k_h=1, k_w=7, s=1) layer__ = convolution2d_manual('cnn__2', layer__, 256, k_h=1, k_w=7, s=1) layer___ = convolution2d('cnn___0', x, 192, k=1, s=1) layer___ = convolution2d_manual('cnn___1', layer___, 192, k_h=1, k_w=7, s=1) layer___ = convolution2d_manual('cnn___2', layer___, 224, k_h=7, k_w=1, s=1) layer___ = convolution2d_manual('cnn___3', layer___, 224, k_h=1, k_w=7, s=1) layer___ = convolution2d_manual('cnn___4', layer___, 256, k_h=7, k_w=1, s=1) layer_join = tf.concat([layer, layer_, layer__, layer___], axis=3, name='join') print 'layer_name :', 'join' print 'layer_shape :', layer_join.get_shape() return layer_join