def main(args, config): cuda = cnn_utils.check_cuda(config) model = cnn_utils.load_model_and_weights(args, config) if cuda: model = model.cuda() file_path = os.path.join(config['PATH']['hdf5_dir'], config['PATH']['hdf5_name']) with h5py.File(file_path, mode='r', libver='latest') as hdf5_file: overall_psnr_accum = (0, 0, 0) overall_ssim_accum = (0, 0, 0) for sample_num in range(args.nSamples): p1, s1 = do_one_demo(args, config, hdf5_file, model, sample_num, cuda) overall_psnr_accum = welford.update(overall_psnr_accum, p1) overall_ssim_accum = welford.update(overall_ssim_accum, s1) if args.nSamples > 1: psnr_mean, psnr_var, _ = welford.finalize(overall_psnr_accum) ssim_mean, ssim_var, _ = welford.finalize(overall_ssim_accum) print("\nOverall cnn psnr average {:5f}, stddev {:5f}".format( psnr_mean, math.sqrt(psnr_var))) print("Overall cnn ssim average {:5f}, stddev {:5f}".format( ssim_mean, math.sqrt(ssim_var))) #Ground truth possible """
def main(args, config, sample_index): cuda = cnn_utils.check_cuda(config) model = cnn_utils.load_model_and_weights(args, config) if cuda: model = model.cuda() model.eval() # Create output directory base_dir = os.path.join(config['PATH']['output_dir'], 'warped') if not os.path.isdir(base_dir): pathlib.Path(base_dir).mkdir(parents=True, exist_ok=True) save_dir = get_sub_dir_for_saving(base_dir) start_time = time.time() file_path = os.path.join(config['PATH']['hdf5_dir'], config['PATH']['hdf5_name']) with h5py.File(file_path, mode='r', libver='latest') as hdf5_file: depth_grp = hdf5_file['val']['disparity'] SNUM = sample_index depth_images = torch.squeeze( torch.tensor(depth_grp['images'][SNUM], dtype=torch.float32)) colour_grp = hdf5_file['val']['colour'] colour_images = torch.tensor(colour_grp['images'][SNUM], dtype=torch.float32) sample = { 'depth': depth_images, 'colour': colour_images, 'grid_size': depth_images.shape[0] } warped = data_transform.center_normalise(sample) im_input = warped['inputs'].unsqueeze_(0) if cuda: im_input = im_input.cuda() output = model(im_input) time_taken = time.time() - start_time print("Time taken was {:4f}s".format(time_taken)) grid_size = 64 psnr_accumulator = (0, 0, 0) ssim_accumulator = (0, 0, 0) print("Saving output to", save_dir) output = torch.squeeze(denormalise_lf(output)) cpu_output = np.around(output.cpu().detach().numpy()).astype(np.uint8) if (not args.no_eval) or args.get_diff: ground_truth = np.around( denormalise_lf(colour_images).numpy()).astype(np.uint8) grid_len = int(math.sqrt(grid_size)) for i in range(grid_size): row, col = i // grid_len, i % grid_len file_name = 'Colour{}{}.png'.format(row, col) save_location = os.path.join(save_dir, file_name) if i == 0: print("Saving images of size ", cpu_output[i].shape) image_warping.save_array_as_image(cpu_output[i], save_location) if args.get_diff: colour = ground_truth[i] diff = image_warping.get_diff_image(colour, cpu_output[i]) #diff = get_diff_image_floatint(res, colour) file_name = 'Diff{}{}.png'.format(row, col) save_location = os.path.join(save_dir, file_name) image_warping.save_array_as_image(diff, save_location) if not args.no_eval: img = ground_truth[i] file_name = 'GT_Colour{}{}.png'.format(row, col) save_location = os.path.join(save_dir, file_name) image_warping.save_array_as_image(img, save_location) psnr = evaluate.my_psnr(cpu_output[i], img) ssim = evaluate.ssim(cpu_output[i], img) psnr_accumulator = welford.update(psnr_accumulator, psnr) ssim_accumulator = welford.update(ssim_accumulator, ssim) psnr_mean, psnr_var, _ = welford.finalize(psnr_accumulator) ssim_mean, ssim_var, _ = welford.finalize(ssim_accumulator) print("For cnn, psnr average {:5f}, stddev {:5f}".format( psnr_mean, math.sqrt(psnr_var))) print("For cnn, ssim average {:5f}, stddev {:5f}".format( ssim_mean, math.sqrt(ssim_var)))