def create_trainer(network, minibatch_size, epoch_size, num_quantization_bits): if network['name'] == 'resnet20': lr_per_mb = [1.0] * 80 + [0.1] * 40 + [0.01] elif network['name'] == 'resnet110': lr_per_mb = [0.1] * 1 + [1.0] * 80 + [0.1] * 40 + [0.01] else: return RuntimeError("Unknown model name!") momentum_time_constant = -minibatch_size / np.log(0.9) l2_reg_weight = 0.0001 # Set learning parameters lr_per_sample = [lr / minibatch_size for lr in lr_per_mb] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample) mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant) # learner object local_learner = momentum_sgd(network['output'].parameters, lr_schedule, mm_schedule, unit_gain=True, l2_regularization_weight=l2_reg_weight) learner = data_parallel_distributed_learner( learner=local_learner, num_quantization_bits=num_quantization_bits, distributed_after=0) return Trainer(network['output'], network['ce'], network['pe'], learner)
def create_trainer(network, minibatch_size, epoch_size, num_quantization_bits, block_size, warm_up): if network['name'] == 'resnet20': lr_per_mb = [1.0]*80+[0.1]*40+[0.01] elif network['name'] == 'resnet110': lr_per_mb = [0.1]*1+[1.0]*80+[0.1]*40+[0.01] else: return RuntimeError("Unknown model name!") momentum_time_constant = -minibatch_size/np.log(0.9) l2_reg_weight = 0.0001 # Set learning parameters lr_per_sample = [lr/minibatch_size for lr in lr_per_mb] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample) mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant) # learner object if block_size != None and num_quantization_bits != 32: raise RuntimeError("Block momentum cannot be used with quantization, please remove quantized_bits option.") local_learner = momentum_sgd(network['output'].parameters, lr_schedule, mm_schedule, l2_regularization_weight = l2_reg_weight) if block_size != None: learner = block_momentum_distributed_learner(local_learner, block_size=block_size) else: learner = data_parallel_distributed_learner(local_learner, num_quantization_bits=num_quantization_bits, distributed_after=warm_up) return Trainer(network['output'], (network['ce'], network['pe']), learner)
def create_trainer(network, minibatch_size, epoch_size, num_quantization_bits, block_size, warm_up, progress_printer): if network['name'] == 'resnet20': lr_per_mb = [1.0]*80+[0.1]*40+[0.01] elif network['name'] == 'resnet110': lr_per_mb = [0.1]*1+[1.0]*80+[0.1]*40+[0.01] else: return RuntimeError("Unknown model name!") momentum_time_constant = -minibatch_size/np.log(0.9) l2_reg_weight = 0.0001 # Set learning parameters lr_per_sample = [lr/minibatch_size for lr in lr_per_mb] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample) mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant) # learner object if block_size != None and num_quantization_bits != 32: raise RuntimeError("Block momentum cannot be used with quantization, please remove quantized_bits option.") local_learner = momentum_sgd(network['output'].parameters, lr_schedule, mm_schedule, l2_regularization_weight = l2_reg_weight) if block_size != None: learner = block_momentum_distributed_learner(local_learner, block_size=block_size) else: learner = data_parallel_distributed_learner(local_learner, num_quantization_bits=num_quantization_bits, distributed_after=warm_up) return Trainer(network['output'], (network['ce'], network['pe']), learner, progress_printer)
def train_lm(training_file, epochs, max_num_minibatches): # load the data and vocab data, char_to_ix, ix_to_char, data_size, vocab_dim = load_data_and_vocab(training_file) # Model the source and target inputs to the model input_sequence, label_sequence = create_inputs(vocab_dim) # create the model model = create_model(vocab_dim) # and apply it to the input sequence z = model(input_sequence) # setup the criterions (loss and metric) ce = cross_entropy_with_softmax(z, label_sequence) errs = classification_error(z, label_sequence) # Instantiate the trainer object to drive the model training lr_per_sample = learning_rate_schedule(0.001, UnitType.sample) momentum_time_constant = momentum_as_time_constant_schedule(1100) clipping_threshold_per_sample = 5.0 gradient_clipping_with_truncation = True learner = momentum_sgd(z.parameters, lr_per_sample, momentum_time_constant, gradient_clipping_threshold_per_sample=clipping_threshold_per_sample, gradient_clipping_with_truncation=gradient_clipping_with_truncation) progress_printer = ProgressPrinter(freq=100, tag='Training') trainer = Trainer(z, (ce, errs), learner, progress_printer) sample_freq = 1000 minibatches_per_epoch = min(data_size // minibatch_size, max_num_minibatches // epochs) # print out some useful training information log_number_of_parameters(z) print ("Running %d epochs with %d minibatches per epoch" % (epochs, minibatches_per_epoch)) print() for e in range(0, epochs): # Specify the mapping of input variables in the model to actual minibatch data to be trained with # If it's the start of the data, we specify that we are looking at a new sequence (True) mask = [True] for b in range(0, minibatches_per_epoch): # get the data features, labels = get_data(b, minibatch_size, data, char_to_ix, vocab_dim) arguments = ({input_sequence : features, label_sequence : labels}, mask) mask = [False] trainer.train_minibatch(arguments) global_minibatch = e*minibatches_per_epoch + b if global_minibatch % sample_freq == 0: print(sample(z, ix_to_char, vocab_dim, char_to_ix)) model_filename = "models/shakespeare_epoch%d.dnn" % (e+1) z.save_model(model_filename) print("Saved model to '%s'" % model_filename)
def train_lm(): data = DataReader(token_to_id_path, segment_sepparator) # Create model nodes for the source and target inputs input_sequence, label_sequence = create_inputs(data.vocab_dim) # Create the model. It has three output nodes # z: the input to softmax that provides the latent representation of the next token # cross_entropy: this is used training criterion # error: this a binary indicator if the model predicts the correct token z, cross_entropy, error = create_model(input_sequence, label_sequence, data.vocab_dim, hidden_dim) # For measurement we use the (build in) full softmax. full_ce = C.cross_entropy_with_softmax(z, label_sequence) # print out some useful training information log_number_of_parameters(z) ; print() # Run the training loop num_trained_samples = 0 num_trained_samples_since_last_report = 0 # Instantiate the trainer object to drive the model training lr_schedule = learning_rate_schedule(learning_rate, UnitType.sample) momentum_schedule = momentum_as_time_constant_schedule(momentum_as_time_constant) gradient_clipping_with_truncation = True learner = momentum_sgd(z.parameters, lr_schedule, momentum_schedule, gradient_clipping_threshold_per_sample=clipping_threshold_per_sample, gradient_clipping_with_truncation=gradient_clipping_with_truncation) trainer = Trainer(z, (cross_entropy, error), learner) for epoch_count in range(num_epochs): for features, labels, token_count in data.minibatch_generator(train_file_path, sequence_length, sequences_per_batch): arguments = ({input_sequence : features, label_sequence : labels}) t_start = timeit.default_timer() trainer.train_minibatch(arguments) t_end = timeit.default_timer() samples_per_second = token_count / (t_end - t_start) # Print progress report every num_samples_between_progress_report samples if num_trained_samples_since_last_report >= num_samples_between_progress_report or num_trained_samples == 0: av_ce = average_cross_entropy(full_ce, input_sequence, label_sequence, data) print_progress(samples_per_second, av_ce, num_trained_samples, t_start) num_trained_samples_since_last_report = 0 num_trained_samples += token_count num_trained_samples_since_last_report += token_count # after each epoch save the model model_filename = "models/lm_epoch%d.dnn" % epoch_count z.save_model(model_filename) print("Saved model to '%s'" % model_filename)
def train_fast_rcnn(debug_output=False): if debug_output: print("Storing graphs and intermediate models to %s." % os.path.join(abs_path, "Output")) # Create the minibatch source minibatch_source = create_mb_source(image_height, image_width, num_channels, num_classes, num_rois, base_path, "train") # Input variables denoting features, rois and label data image_input = input_variable((num_channels, image_height, image_width)) roi_input = input_variable((num_rois, 4)) label_input = input_variable((num_rois, num_classes)) # define mapping from reader streams to network inputs input_map = { image_input: minibatch_source[features_stream_name], roi_input: minibatch_source[roi_stream_name], label_input: minibatch_source[label_stream_name] } # Instantiate the Fast R-CNN prediction model and loss function frcn_output = frcn_predictor(image_input, roi_input, num_classes) ce = cross_entropy_with_softmax(frcn_output, label_input, axis=1) pe = classification_error(frcn_output, label_input, axis=1) if debug_output: plot(frcn_output, os.path.join(abs_path, "Output", "graph_frcn.png")) # Set learning parameters l2_reg_weight = 0.0005 lr_per_sample = [0.00001] * 10 + [0.000001] * 5 + [0.0000001] lr_schedule = learning_rate_schedule(lr_per_sample, unit=UnitType.sample) mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant) # Instantiate the trainer object learner = momentum_sgd(frcn_output.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight) trainer = Trainer(frcn_output, (ce, pe), learner) # Get minibatches of images and perform model training print("Training Fast R-CNN model for %s epochs." % max_epochs) log_number_of_parameters(frcn_output) progress_printer = ProgressPrinter(tag='Training', num_epochs=max_epochs) for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = minibatch_source.next_minibatch(min(mb_size, epoch_size-sample_count), input_map=input_map) trainer.train_minibatch(data) # update model with it sample_count += trainer.previous_minibatch_sample_count # count samples processed so far progress_printer.update_with_trainer(trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) if debug_output: frcn_output.save(os.path.join(abs_path, "Output", "frcn_py_%s.model" % (epoch+1))) return frcn_output
def Evaluator(model, criterion): from cntk import Trainer from cntk.learner import momentum_sgd, learning_rate_schedule, UnitType, momentum_as_time_constant_schedule loss, metric = Trainer._get_loss_metric(criterion) parameters = set(loss.parameters) if model: parameters |= set(model.parameters) if metric: parameters |= set(metric.parameters) dummy_learner = momentum_sgd(tuple(parameters), lr = learning_rate_schedule(1, UnitType.minibatch), momentum = momentum_as_time_constant_schedule(0)) return Trainer(model, (loss, metric), dummy_learner)
def Evaluator(model, criterion): from cntk import Trainer from cntk.learner import momentum_sgd, learning_rate_schedule, UnitType, momentum_as_time_constant_schedule loss, metric = Trainer._get_loss_metric(criterion) parameters = set(loss.parameters) if model: parameters |= set(model.parameters) if metric: parameters |= set(metric.parameters) dummy_learner = momentum_sgd( tuple(parameters), lr=learning_rate_schedule(1, UnitType.minibatch), momentum=momentum_as_time_constant_schedule(0)) return Trainer(model, (loss, metric), dummy_learner)
def train_model(base_model_file, feature_node_name, last_hidden_node_name, image_width, image_height, num_channels, num_classes, train_map_file, num_epochs, max_images=-1, freeze=False): epoch_size = sum(1 for line in open(train_map_file)) if max_images > 0: epoch_size = min(epoch_size, max_images) # Create the minibatch source and input variables minibatch_source = create_mb_source(train_map_file, image_width, image_height, num_channels, num_classes) image_input = input_variable((num_channels, image_height, image_width)) label_input = input_variable(num_classes) # Define mapping from reader streams to network inputs input_map = { image_input: minibatch_source[features_stream_name], label_input: minibatch_source[label_stream_name] } # Instantiate the transfer learning model and loss function tl_model = create_model(base_model_file, feature_node_name, last_hidden_node_name, num_classes, image_input, freeze) ce = cross_entropy_with_softmax(tl_model, label_input) pe = classification_error(tl_model, label_input) # Instantiate the trainer object lr_schedule = learning_rate_schedule(lr_per_mb, unit=UnitType.minibatch) mm_schedule = momentum_schedule(momentum_per_mb) learner = momentum_sgd(tl_model.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight) trainer = Trainer(tl_model, (ce, pe), learner) # Get minibatches of images and perform model training print("Training transfer learning model for {0} epochs (epoch_size = {1}).".format(num_epochs, epoch_size)) log_number_of_parameters(tl_model) progress_printer = ProgressPrinter(tag='Training', num_epochs=num_epochs) for epoch in range(num_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = minibatch_source.next_minibatch(min(mb_size, epoch_size-sample_count), input_map=input_map) trainer.train_minibatch(data) # update model with it sample_count += trainer.previous_minibatch_sample_count # count samples processed so far progress_printer.update_with_trainer(trainer, with_metric=True) # log progress if sample_count % (100 * mb_size) == 0: print ("Processed {0} samples".format(sample_count)) progress_printer.epoch_summary(with_metric=True) return tl_model
def create_trainer(network, epoch_size, num_quantization_bits, block_size, warm_up): # Instantiate the trainer object to drive the model training lr_per_minibatch = learning_rate_schedule(0.5, UnitType.minibatch) momentum_time_constant = momentum_as_time_constant_schedule(1100) clipping_threshold_per_sample = 2.3 gradient_clipping_with_truncation = True # Create learner if block_size is not None and num_quantization_bits != default_quantization_bits: raise RuntimeError("Block momentum cannot be used with quantization, please remove quantized_bits option.") local_learner = momentum_sgd(network['output'].parameters, lr_per_minibatch, momentum_time_constant, gradient_clipping_threshold_per_sample=clipping_threshold_per_sample, gradient_clipping_with_truncation=gradient_clipping_with_truncation) if block_size != None: learner = block_momentum_distributed_learner(local_learner, block_size=block_size) else: learner = data_parallel_distributed_learner(local_learner, num_quantization_bits=num_quantization_bits, distributed_after=warm_up) return Trainer(network['output'], (network['ce'], network['pe']), learner)
def train_and_evaluate(reader_train, reader_test, network_name): set_computation_network_trace_level(0) # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width)) label_var = input_variable((num_classes)) # create model, and configure learning parameters if network_name == 'resnet20': z = create_cifar10_model(input_var, 3, num_classes) lr_per_mb = [1.0]*80+[0.1]*40+[0.01] elif network_name == 'resnet110': z = create_cifar10_model(input_var, 18, num_classes) lr_per_mb = [0.1]*1+[1.0]*80+[0.1]*40+[0.01] else: return RuntimeError("Unknown model name!") # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) # shared training parameters epoch_size = 50000 # for now we manually specify epoch size minibatch_size = 128 max_epochs = 160 momentum_time_constant = -minibatch_size/np.log(0.9) l2_reg_weight = 0.0001 # Set learning parameters lr_per_sample = [lr/minibatch_size for lr in lr_per_mb] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size) mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant) # trainer object learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule, l2_regularization_weight = l2_reg_weight) trainer = Trainer(z, ce, pe, learner) # define mapping from reader streams to network inputs input_map = { input_var: reader_train.streams.features, label_var: reader_train.streams.labels } log_number_of_parameters(z) ; print() progress_printer = ProgressPrinter(tag='Training') # perform model training for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = reader_train.next_minibatch(min(minibatch_size, epoch_size-sample_count), input_map=input_map) # fetch minibatch. trainer.train_minibatch(data) # update model with it sample_count += data[label_var].num_samples # count samples processed so far progress_printer.update_with_trainer(trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) persist.save_model(z, os.path.join(model_path, network_name + "_{}.dnn".format(epoch))) # Evaluation parameters epoch_size = 10000 minibatch_size = 16 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 while sample_count < epoch_size: current_minibatch = min(minibatch_size, epoch_size - sample_count) # Fetch next test min batch. data = reader_test.next_minibatch(current_minibatch, input_map=input_map) # minibatch data to be trained with metric_numer += trainer.test_minibatch(data) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. sample_count += data[label_var].num_samples minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom)) print("") return metric_numer/metric_denom
def conv3d_ucf11(train_reader, test_reader, max_epochs=30): # Replace 0 with 1 to get detailed log. set_computation_network_trace_level(0) # These values must match for both train and test reader. image_height = train_reader.height image_width = train_reader.width num_channels = train_reader.channel_count sequence_length = train_reader.sequence_length num_output_classes = train_reader.label_count # Input variables denoting the features and label data input_var = input_variable( (num_channels, sequence_length, image_height, image_width), np.float32) label_var = input_variable(num_output_classes, np.float32) # Instantiate simple 3D Convolution network inspired by VGG network # and http://vlg.cs.dartmouth.edu/c3d/c3d_video.pdf with default_options(activation=relu): z = Sequential([ Convolution((3, 3, 3), 64, pad=True), MaxPooling((1, 2, 2), (1, 2, 2)), LayerStack( 3, lambda i: [ Convolution((3, 3, 3), [96, 128, 128][i], pad=True), Convolution((3, 3, 3), [96, 128, 128][i], pad=True), MaxPooling((2, 2, 2), (2, 2, 2)) ]), LayerStack(2, lambda: [Dense(1024), Dropout(0.5)]), Dense(num_output_classes, activation=None) ])(input_var) # loss and classification error. ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) # training config epoch_size = 1322 # for now we manually specify epoch size minibatch_size = 4 # Set learning parameters lr_per_sample = [0.01] * 10 + [0.001] * 10 + [0.0001] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample) momentum_time_constant = 4096 mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant, epoch_size=epoch_size) # Instantiate the trainer object to drive the model training learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule, True) trainer = Trainer(z, ce, pe, learner) log_number_of_parameters(z) print() progress_printer = ProgressPrinter(tag='Training') # Get minibatches of images to train with and perform model training for epoch in range(max_epochs): # loop over epochs train_reader.reset() while train_reader.has_more(): videos, labels, current_minibatch = train_reader.next_minibatch( minibatch_size) trainer.train_minibatch({input_var: videos, label_var: labels}) progress_printer.update_with_trainer( trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) # Test data for trained model epoch_size = 332 minibatch_size = 2 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 minibatch_index = 0 test_reader.reset() while test_reader.has_more(): videos, labels, current_minibatch = test_reader.next_minibatch( minibatch_size) # minibatch data to be trained with metric_numer += trainer.test_minibatch({ input_var: videos, label_var: labels }) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format( minibatch_index + 1, (metric_numer * 100.0) / metric_denom, metric_denom)) print("") return metric_numer / metric_denom
def train_and_evaluate(create_train_reader, test_reader, network_name, max_epochs, create_dist_learner, scale_up=False): set_computation_network_trace_level(0) # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width)) label_var = input_variable((num_classes)) # create model, and configure learning parameters if network_name == 'resnet20': z = create_cifar10_model(input_var, 3, num_classes) lr_per_mb = [1.0]*80+[0.1]*40+[0.01] elif network_name == 'resnet110': z = create_cifar10_model(input_var, 18, num_classes) lr_per_mb = [0.1]*1+[1.0]*80+[0.1]*40+[0.01] else: return RuntimeError("Unknown model name!") # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) # shared training parameters epoch_size = 50000 # for now we manually specify epoch size # NOTE: scaling up minibatch_size increases sample throughput. In 8-GPU machine, # ResNet110 samples-per-second is ~7x of single GPU, comparing to ~3x without scaling # up. However, bigger minimatch size on the same number of samples means less updates, # thus leads to higher training error. This is a trade-off of speed and accuracy minibatch_size = 128 * (distributed.Communicator.num_workers() if scale_up else 1) momentum_time_constant = -minibatch_size/np.log(0.9) l2_reg_weight = 0.0001 # Set learning parameters lr_per_sample = [lr/minibatch_size for lr in lr_per_mb] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample) mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant) # trainer object learner = create_dist_learner(momentum_sgd(z.parameters, lr_schedule, mm_schedule, l2_regularization_weight = l2_reg_weight)) trainer = Trainer(z, ce, pe, learner) total_number_of_samples = max_epochs * epoch_size train_reader=create_train_reader(total_number_of_samples) # define mapping from reader streams to network inputs input_map = { input_var: train_reader.streams.features, label_var: train_reader.streams.labels } log_number_of_parameters(z) ; print() progress_printer = ProgressPrinter(tag='Training') # perform model training current_epoch=0 updated=True while updated: data=train_reader.next_minibatch(minibatch_size, input_map=input_map) # fetch minibatch. updated=trainer.train_minibatch(data) # update model with it progress_printer.update_with_trainer(trainer, with_metric=True) # log progress epoch_index = int(trainer.total_number_of_samples_seen/epoch_size) if current_epoch != epoch_index: # new epoch reached progress_printer.epoch_summary(with_metric=True) current_epoch=epoch_index trainer.save_checkpoint(os.path.join(model_path, network_name + "_{}.dnn".format(current_epoch))) # Evaluation parameters epoch_size = 10000 minibatch_size = 16 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 while True: data = test_reader.next_minibatch(minibatch_size, input_map=input_map) if not data: break; local_mb_samples=data[label_var].num_samples metric_numer += trainer.test_minibatch(data) * local_mb_samples metric_denom += local_mb_samples minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom)) print("") return metric_numer/metric_denom
def cifar_resnet(base_path, debug_output=False): image_height = 32 image_width = 32 num_channels = 3 num_classes = 10 feats_stream_name = 'features' labels_stream_name = 'labels' minibatch_source = create_mb_source(feats_stream_name, labels_stream_name, image_height, image_width, num_channels, num_classes, base_path) features_si = minibatch_source[feats_stream_name] labels_si = minibatch_source[labels_stream_name] # Input variables denoting the features and label data image_input = input_variable( (num_channels, image_height, image_width), features_si.m_element_type) label_var = input_variable((num_classes), features_si.m_element_type) # Instantiate the resnet classification model classifier_output = resnet_classifer(image_input, num_classes) ce = cross_entropy_with_softmax(classifier_output, label_var) pe = classification_error(classifier_output, label_var) mb_size = 128 num_mb_per_epoch = 100 num_epochs = 10 num_mbs = num_mb_per_epoch * num_epochs lr_per_sample = [1/mb_size]*80+[0.1/mb_size]*40+[0.01/mb_size] lr_schedule = learning_rate_schedule(lr_per_sample, units=mb_size * num_mb_per_epoch) momentum_per_sample=0.9**(1.0/128) # Instantiate the trainer object to drive the model training trainer = Trainer(classifier_output, ce, pe, [momentum_sgd(classifier_output.parameters, lr_schedule, momentum_per_sample, l2_regularization_weight=0.0001)]) # Get minibatches of images to train with and perform model training training_progress_output_freq = 100 if debug_output: training_progress_output_freq = training_progress_output_freq/3 for i in range(0, num_mbs): mb = minibatch_source.next_minibatch(mb_size) # Specify the mapping of input variables in the model to actual # minibatch data to be trained with arguments = { image_input: mb[features_si], label_var: mb[labels_si] } trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) test_minibatch_source = create_test_mb_source(feats_stream_name, labels_stream_name, image_height, image_width, num_channels, num_classes, base_path) features_si = test_minibatch_source[feats_stream_name] labels_si = test_minibatch_source[labels_stream_name] mb_size = 128 num_mbs = 100 total_error = 0.0 for i in range(0, num_mbs): mb = test_minibatch_source.next_minibatch(mb_size) # Specify the mapping of input variables in the model to actual # minibatch data to be trained with arguments = { image_input: mb[features_si], label_var: mb[labels_si] } error = trainer.test_minibatch(arguments) total_error += error return total_error / num_mbs
def train_and_evaluate(reader_train, reader_test, network_name, epoch_size, max_epochs, profiler_dir=None, model_dir=None, tensorboard_logdir=None): set_computation_network_trace_level(0) # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width)) label_var = input_variable((num_classes)) # create model, and configure learning parameters if network_name == 'resnet20': z = create_cifar10_model(input_var, 3, num_classes) lr_per_mb = [1.0]*80+[0.1]*40+[0.01] elif network_name == 'resnet110': z = create_cifar10_model(input_var, 18, num_classes) lr_per_mb = [0.1]*1+[1.0]*80+[0.1]*40+[0.01] else: return RuntimeError("Unknown model name!") # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) # shared training parameters minibatch_size = 128 momentum_time_constant = -minibatch_size/np.log(0.9) l2_reg_weight = 0.0001 # Set learning parameters lr_per_sample = [lr/minibatch_size for lr in lr_per_mb] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample) mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant) # progress writers progress_writers = [ProgressPrinter(tag='Training', num_epochs=max_epochs)] tensorboard_writer = None if tensorboard_logdir is not None: tensorboard_writer = TensorBoardProgressWriter(freq=10, log_dir=tensorboard_logdir, model=z) progress_writers.append(tensorboard_writer) # trainer object learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule, l2_regularization_weight = l2_reg_weight) trainer = Trainer(z, (ce, pe), learner, progress_writers) # define mapping from reader streams to network inputs input_map = { input_var: reader_train.streams.features, label_var: reader_train.streams.labels } log_number_of_parameters(z) ; print() # perform model training if profiler_dir: start_profiler(profiler_dir, True) for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = reader_train.next_minibatch(min(minibatch_size, epoch_size-sample_count), input_map=input_map) # fetch minibatch. trainer.train_minibatch(data) # update model with it sample_count += trainer.previous_minibatch_sample_count # count samples processed so far trainer.summarize_training_progress() # Log mean of each parameter tensor, so that we can confirm that the parameters change indeed. if tensorboard_writer: for parameter in z.parameters: tensorboard_writer.write_value(parameter.uid + "/mean", reduce_mean(parameter).eval(), epoch) if model_dir: z.save(os.path.join(model_dir, network_name + "_{}.dnn".format(epoch))) enable_profiler() # begin to collect profiler data after first epoch if profiler_dir: stop_profiler() # Evaluation parameters test_epoch_size = 10000 minibatch_size = 16 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 while sample_count < test_epoch_size: current_minibatch = min(minibatch_size, test_epoch_size - sample_count) # Fetch next test min batch. data = reader_test.next_minibatch(current_minibatch, input_map=input_map) # minibatch data to be trained with metric_numer += trainer.test_minibatch(data) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. sample_count += data[label_var].num_samples print("") trainer.summarize_test_progress() print("") return metric_numer/metric_denom
def convnet_cifar10_dataaug(reader_train, reader_test, max_epochs = 80): set_computation_network_trace_level(0) # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width)) label_var = input_variable((num_classes)) # apply model to input scaled_input = element_times(constant(0.00390625), input_var) with default_options (activation=relu, pad=True): z = Sequential([ LayerStack(2, lambda : [ Convolution((3,3), 64), Convolution((3,3), 64), MaxPooling((3,3), (2,2)) ]), LayerStack(2, lambda i: [ Dense([256,128][i]), Dropout(0.5) ]), Dense(num_classes, activation=None) ])(scaled_input) # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) # training config epoch_size = 50000 # for now we manually specify epoch size minibatch_size = 64 # Set learning parameters lr_per_sample = [0.0015625]*20+[0.00046875]*20+[0.00015625]*20+[0.000046875]*10+[0.000015625] lr_schedule = learning_rate_schedule(lr_per_sample, unit=UnitType.sample, epoch_size=epoch_size) mm_time_constant = [0]*20+[600]*20+[1200] mm_schedule = momentum_as_time_constant_schedule(mm_time_constant, epoch_size=epoch_size) l2_reg_weight = 0.002 # trainer object learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule, l2_regularization_weight = l2_reg_weight) trainer = Trainer(z, ce, pe, learner) # define mapping from reader streams to network inputs input_map = { input_var: reader_train.streams.features, label_var: reader_train.streams.labels } log_number_of_parameters(z) ; print() progress_printer = ProgressPrinter(tag='Training') # perform model training for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = reader_train.next_minibatch(min(minibatch_size, epoch_size-sample_count), input_map=input_map) # fetch minibatch. trainer.train_minibatch(data) # update model with it sample_count += trainer.previous_minibatch_sample_count # count samples processed so far progress_printer.update_with_trainer(trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) persist.save_model(z, os.path.join(model_path, "ConvNet_CIFAR10_DataAug_{}.dnn".format(epoch))) ### Evaluation action epoch_size = 10000 minibatch_size = 16 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 while sample_count < epoch_size: current_minibatch = min(minibatch_size, epoch_size - sample_count) # Fetch next test min batch. data = reader_test.next_minibatch(current_minibatch, input_map=input_map) # minibatch data to be trained with metric_numer += trainer.test_minibatch(data) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. sample_count += data[label_var].num_samples minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom)) print("") return metric_numer/metric_denom
def cifar_resnet_distributed(data_path, run_test, num_epochs, communicator=None, save_model_filename=None, load_model_filename=None, debug_output=False): image_height = 32 image_width = 32 num_channels = 3 num_classes = 10 feats_stream_name = 'features' labels_stream_name = 'labels' minibatch_source = create_reader(os.path.join(data_path, 'train_map.txt'), os.path.join(data_path, 'CIFAR-10_mean.xml'), True, distributed_communicator = communicator) features_si = minibatch_source[feats_stream_name] labels_si = minibatch_source[labels_stream_name] # Instantiate the resnet classification model, or load from file if load_model_filename: print("Loading model:", load_model_filename) classifier_output = persist.load_model(load_model_filename) image_input = classifier_output.arguments[0] else: image_input = input_variable( (num_channels, image_height, image_width), features_si.m_element_type) classifier_output = create_resnet_model(image_input, num_classes) # Input variables denoting the features and label data label_var = input_variable((num_classes), features_si.m_element_type) ce = cross_entropy_with_softmax(classifier_output, label_var) pe = classification_error(classifier_output, label_var) # Instantiate the trainer object to drive the model training mb_size = 128 num_mb_per_epoch = 100 num_mbs = num_mb_per_epoch * num_epochs lr_per_sample = [1/mb_size]*80+[0.1/mb_size]*40+[0.01/mb_size] lr_schedule = learning_rate_schedule(lr_per_sample, units = mb_size * num_mb_per_epoch) momentum_time_constant = -mb_size/np.log(0.9) # create data parallel distributed trainer if needed dist_trainer = distributed.data_parallel_distributed_trainer(communicator, False) if communicator else None # Instantiate the trainer object to drive the model training trainer = Trainer(classifier_output, ce, pe, [momentum_sgd(classifier_output.parameters, lr_schedule, momentum_time_constant, l2_regularization_weight=0.0001)], distributed_trainer = dist_trainer) # Get minibatches of images to train with and perform model training training_progress_output_freq = 100 if communicator else 20 if debug_output: training_progress_output_freq = training_progress_output_freq/4 for i in range(0, num_mbs): # NOTE: depends on network, the mb_size can be changed dynamically here mb = minibatch_source.next_minibatch(mb_size) # Specify the mapping of input variables in the model to actual # minibatch data to be trained with arguments = { image_input: mb[features_si], label_var: mb[labels_si] } trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) if save_model_filename: print("Saving model:", save_model_filename) persist.save_model(classifier_output, save_model_filename) if run_test: test_minibatch_source = create_reader(os.path.join(data_path, 'test_map.txt'), os.path.join(data_path, 'CIFAR-10_mean.xml'), False) features_si = test_minibatch_source[feats_stream_name] labels_si = test_minibatch_source[labels_stream_name] mb_size = 128 num_mbs = 100 total_error = 0.0 for i in range(0, num_mbs): mb = test_minibatch_source.next_minibatch(mb_size) # Specify the mapping of input variables in the model to actual # minibatch data to be trained with arguments = { image_input: mb[features_si], label_var: mb[labels_si] } error = trainer.test_minibatch(arguments) total_error += error return total_error / num_mbs else: return 0
def train_and_evaluate(reader_train, reader_test, network_name, max_epochs): set_computation_network_trace_level(0) # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width)) label_var = input_variable((num_classes)) # create model, and configure learning parameters if network_name == 'resnet20': z = create_cifar10_model(input_var, 3, num_classes) lr_per_mb = [1.0] * 80 + [0.1] * 40 + [0.01] elif network_name == 'resnet110': z = create_cifar10_model(input_var, 18, num_classes) lr_per_mb = [0.1] * 1 + [1.0] * 80 + [0.1] * 40 + [0.01] else: return RuntimeError("Unknown model name!") # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) # shared training parameters epoch_size = 50000 # for now we manually specify epoch size minibatch_size = 128 momentum_time_constant = -minibatch_size / np.log(0.9) l2_reg_weight = 0.0001 # Set learning parameters lr_per_sample = [lr / minibatch_size for lr in lr_per_mb] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample) mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant) # trainer object learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight) trainer = Trainer(z, ce, pe, learner) # define mapping from reader streams to network inputs input_map = { input_var: reader_train.streams.features, label_var: reader_train.streams.labels } log_number_of_parameters(z) print() progress_printer = ProgressPrinter(tag='Training') # perform model training for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = reader_train.next_minibatch( min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch. trainer.train_minibatch(data) # update model with it sample_count += trainer.previous_minibatch_sample_count # count samples processed so far progress_printer.update_with_trainer( trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) persist.save_model( z, os.path.join(model_path, network_name + "_{}.dnn".format(epoch))) # Evaluation parameters epoch_size = 10000 minibatch_size = 16 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 while sample_count < epoch_size: current_minibatch = min(minibatch_size, epoch_size - sample_count) # Fetch next test min batch. data = reader_test.next_minibatch(current_minibatch, input_map=input_map) # minibatch data to be trained with metric_numer += trainer.test_minibatch(data) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. sample_count += data[label_var].num_samples minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format( minibatch_index + 1, (metric_numer * 100.0) / metric_denom, metric_denom)) print("") return metric_numer / metric_denom
def train(train_reader, valid_reader, vocab, i2w, model, max_epochs): # do some hooks that we won't need in the future label_sequence = model.find_by_name('label_sequence') decoder_history_hook = model.find_by_name('decoder_history_hook') # Criterion nodes ce = cross_entropy_with_softmax(model, label_sequence) errs = classification_error(model, label_sequence) def clone_and_hook(): # network output for decoder history net_output = hardmax(model) # make a clone of the graph where the ground truth is replaced by the network output return model.clone(CloneMethod.share, {decoder_history_hook.output: net_output.output}) # get a new model that uses the past network output as input to the decoder new_model = clone_and_hook() # Instantiate the trainer object to drive the model training lr_per_sample = learning_rate_schedule(0.007, UnitType.sample) minibatch_size = 72 momentum_time_constant = momentum_as_time_constant_schedule(1100) clipping_threshold_per_sample = 2.3 gradient_clipping_with_truncation = True learner = momentum_sgd( model.parameters, lr_per_sample, momentum_time_constant, gradient_clipping_threshold_per_sample=clipping_threshold_per_sample, gradient_clipping_with_truncation=gradient_clipping_with_truncation) trainer = Trainer(model, ce, errs, learner) # Get minibatches of sequences to train with and perform model training i = 0 mbs = 0 # Set epoch size to a larger number of lower training error epoch_size = 5000 if isFast else 908241 training_progress_output_freq = 100 # bind inputs to data from readers train_bind = { find_arg_by_name('raw_input', model): train_reader.streams.features, find_arg_by_name('raw_labels', model): train_reader.streams.labels } valid_bind = { find_arg_by_name('raw_input', new_model): valid_reader.streams.features, find_arg_by_name('raw_labels', new_model): valid_reader.streams.labels } for epoch in range(max_epochs): loss_numer = 0 metric_numer = 0 denom = 0 while i < (epoch + 1) * epoch_size: # get next minibatch of training data mb_train = train_reader.next_minibatch(minibatch_size, input_map=train_bind) trainer.train_minibatch(mb_train) # collect epoch-wide stats samples = trainer.previous_minibatch_sample_count loss_numer += trainer.previous_minibatch_loss_average * samples metric_numer += trainer.previous_minibatch_evaluation_average * samples denom += samples # every N MBs evaluate on a test sequence to visually show how we're doing; also print training stats if mbs % training_progress_output_freq == 0: print( "Minibatch: {0}, Train Loss: {1:2.3f}, Train Evaluation Criterion: {2:2.3f}" .format(mbs, get_train_loss(trainer), get_train_eval_criterion(trainer))) mb_valid = valid_reader.next_minibatch(minibatch_size, input_map=valid_bind) e = new_model.eval(mb_valid) print_sequences(e, i2w) i += mb_train[find_arg_by_name('raw_labels', model)].num_samples mbs += 1 print("--- EPOCH %d DONE: loss = %f, errs = %f ---" % (epoch, loss_numer / denom, 100.0 * (metric_numer / denom))) return 100.0 * (metric_numer / denom)
label_sequence = model.find_by_name('label_sequence') # Criterion nodes ce = cross_entropy_with_softmax(model, label_sequence) errs = classification_error(model, label_sequence) # let's show the required arguments for this model print([x.name for x in model.arguments]) lr_per_sample = learning_rate_schedule(0.007, UnitType.sample) minibatch_size = 72 momentum_time_constant = momentum_as_time_constant_schedule(1100) clipping_threshold_per_sample = 2.3 gradient_clipping_with_truncation = True learner = momentum_sgd( model.parameters, lr_per_sample, momentum_time_constant, gradient_clipping_threshold_per_sample=clipping_threshold_per_sample, gradient_clipping_with_truncation=gradient_clipping_with_truncation) trainer = Trainer(model, ce, errs, learner) # helper function to find variables by name def find_arg_by_name(name, expression): vars = [i for i in expression.arguments if i.name == name] assert len(vars) == 1 return vars[0] train_bind = { find_arg_by_name('raw_input', model): train_reader.streams.features, find_arg_by_name('raw_labels', model): train_reader.streams.labels
def train_lm(): data = DataReader(token_to_id_path, segment_sepparator) # Create model nodes for the source and target inputs input_sequence, label_sequence = create_inputs(data.vocab_dim) # Create the model. It has three output nodes # z: the input to softmax that provides the latent representation of the next token # cross_entropy: this is used training criterion # error: this a binary indicator if the model predicts the correct token z, cross_entropy, error = create_model(input_sequence, label_sequence, data.vocab_dim, hidden_dim) # For measurement we use the (build in) full softmax. full_ce = C.cross_entropy_with_softmax(z, label_sequence) # print out some useful training information log_number_of_parameters(z) print() # Run the training loop num_trained_samples = 0 num_trained_samples_since_last_report = 0 # Instantiate the trainer object to drive the model training lr_schedule = learning_rate_schedule(learning_rate, UnitType.sample) momentum_schedule = momentum_as_time_constant_schedule( momentum_as_time_constant) gradient_clipping_with_truncation = True learner = momentum_sgd( z.parameters, lr_schedule, momentum_schedule, gradient_clipping_threshold_per_sample=clipping_threshold_per_sample, gradient_clipping_with_truncation=gradient_clipping_with_truncation) trainer = Trainer(z, (cross_entropy, error), learner) for epoch_count in range(num_epochs): for features, labels, token_count in data.minibatch_generator( train_file_path, sequence_length, sequences_per_batch): arguments = ({input_sequence: features, label_sequence: labels}) t_start = timeit.default_timer() trainer.train_minibatch(arguments) t_end = timeit.default_timer() samples_per_second = token_count / (t_end - t_start) # Print progress report every num_samples_between_progress_report samples if num_trained_samples_since_last_report >= num_samples_between_progress_report or num_trained_samples == 0: av_ce = average_cross_entropy(full_ce, input_sequence, label_sequence, data) print_progress(samples_per_second, av_ce, num_trained_samples, t_start) num_trained_samples_since_last_report = 0 num_trained_samples += token_count num_trained_samples_since_last_report += token_count # after each epoch save the model model_filename = "models/lm_epoch%d.dnn" % epoch_count z.save_model(model_filename) print("Saved model to '%s'" % model_filename)
def sequence_to_sequence_translator(debug_output=False): input_vocab_dim = 69 label_vocab_dim = 69 hidden_dim = 512 num_layers = 2 # Source and target inputs to the model batch_axis = Axis.default_batch_axis() input_seq_axis = Axis('inputAxis') label_seq_axis = Axis('labelAxis') input_dynamic_axes = [batch_axis, input_seq_axis] raw_input = input_variable(shape=(input_vocab_dim), dynamic_axes=input_dynamic_axes) label_dynamic_axes = [batch_axis, label_seq_axis] raw_labels = input_variable(shape=(label_vocab_dim), dynamic_axes=label_dynamic_axes) # Instantiate the sequence to sequence translation model input_sequence = raw_input # Drop the sentence start token from the label, for decoder training label_sequence = slice(raw_labels, label_seq_axis, 1, 0) label_sentence_start = sequence.first(raw_labels) is_first_label = sequence.is_first(label_sequence) label_sentence_start_scattered = sequence.scatter(label_sentence_start, is_first_label) # Encoder encoder_outputH = stabilize(input_sequence) for i in range(0, num_layers): (encoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( encoder_outputH.output(), hidden_dim, hidden_dim, future_value, future_value) thought_vectorH = sequence.first(encoder_outputH) thought_vectorC = sequence.first(encoder_outputC) thought_vector_broadcastH = sequence.broadcast_as(thought_vectorH, label_sequence) thought_vector_broadcastC = sequence.broadcast_as(thought_vectorC, label_sequence) # Decoder decoder_history_from_ground_truth = label_sequence decoder_input = element_select( is_first_label, label_sentence_start_scattered, past_value(decoder_history_from_ground_truth)) decoder_outputH = stabilize(decoder_input) for i in range(0, num_layers): if (i > 0): recurrence_hookH = past_value recurrence_hookC = past_value else: isFirst = sequence.is_first(label_sequence) recurrence_hookH = lambda operand: element_select( isFirst, thought_vector_broadcastH, past_value(operand)) recurrence_hookC = lambda operand: element_select( isFirst, thought_vector_broadcastC, past_value(operand)) (decoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( decoder_outputH.output(), hidden_dim, hidden_dim, recurrence_hookH, recurrence_hookC) decoder_output = decoder_outputH decoder_dim = hidden_dim # Softmax output layer z = linear_layer(stabilize(decoder_output), label_vocab_dim) ce = cross_entropy_with_softmax(z, label_sequence) errs = classification_error(z, label_sequence) # Instantiate the trainer object to drive the model training lr = 0.007 momentum_time_constant = 1100 momentum_per_sample = momentums_per_sample( math.exp(-1.0 / momentum_time_constant)) clipping_threshold_per_sample = 2.3 gradient_clipping_with_truncation = True trainer = Trainer(z, ce, errs, [ momentum_sgd(z.parameters(), lr, momentum_per_sample, clipping_threshold_per_sample, gradient_clipping_with_truncation) ]) rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.train-dev-20-21.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = 'features' labels_stream_name = 'labels' mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_vocab_dim, True, 'S0'), StreamConfiguration(labels_stream_name, label_vocab_dim, True, 'S1') ], 10000) features_si = mb_source[feature_stream_name] labels_si = mb_source[labels_stream_name] # Get minibatches of sequences to train with and perform model training minibatch_size = 72 training_progress_output_freq = 30 if debug_output: training_progress_output_freq = training_progress_output_freq / 3 while True: mb = mb_source.get_next_minibatch(minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual # minibatch data to be trained with arguments = {raw_input: mb[features_si], raw_labels: mb[labels_si]} trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) i += 1 rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.test.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) test_mb_source = text_format_minibatch_source(path, [ StreamConfiguration(feature_stream_name, input_vocab_dim, True, 'S0'), StreamConfiguration(labels_stream_name, label_vocab_dim, True, 'S1') ], 10000, False) features_si = test_mb_source[feature_stream_name] labels_si = test_mb_source[labels_stream_name] # choose this to be big enough for the longest sentence train_minibatch_size = 1024 # Get minibatches of sequences to test and perform testing i = 0 total_error = 0.0 while True: mb = test_mb_source.get_next_minibatch(train_minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual # minibatch data to be tested with arguments = {raw_input: mb[features_si], raw_labels: mb[labels_si]} mb_error = trainer.test_minibatch(arguments) total_error += mb_error if debug_output: print("Minibatch {}, Error {} ".format(i, mb_error)) i += 1 # Average of evaluation errors of all test minibatches return total_error / i
def conv3d_ucf11(train_reader, test_reader, max_epochs=30): # Replace 0 with 1 to get detailed log. set_computation_network_trace_level(0) # These values must match for both train and test reader. image_height = train_reader.height image_width = train_reader.width num_channels = train_reader.channel_count sequence_length = train_reader.sequence_length num_output_classes = train_reader.label_count # Input variables denoting the features and label data input_var = input_variable((num_channels, sequence_length, image_height, image_width), np.float32) label_var = input_variable(num_output_classes, np.float32) # Instantiate simple 3D Convolution network inspired by VGG network # and http://vlg.cs.dartmouth.edu/c3d/c3d_video.pdf with default_options (activation=relu): z = Sequential([ Convolution3D((3,3,3), 64, pad=True), MaxPooling((1,2,2), (1,2,2)), For(range(3), lambda i: [ Convolution3D((3,3,3), [96, 128, 128][i], pad=True), Convolution3D((3,3,3), [96, 128, 128][i], pad=True), MaxPooling((2,2,2), (2,2,2)) ]), For(range(2), lambda : [ Dense(1024), Dropout(0.5) ]), Dense(num_output_classes, activation=None) ])(input_var) # loss and classification error. ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) # training config epoch_size = 1322 # for now we manually specify epoch size minibatch_size = 4 # Set learning parameters lr_per_sample = [0.01]*10+[0.001]*10+[0.0001] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample) momentum_time_constant = 4096 mm_schedule = momentum_as_time_constant_schedule([momentum_time_constant], epoch_size=epoch_size) # Instantiate the trainer object to drive the model training learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule, True) progress_printer = ProgressPrinter(tag='Training', num_epochs=max_epochs) trainer = Trainer(z, (ce, pe), learner, progress_printer) log_number_of_parameters(z) ; print() # Get minibatches of images to train with and perform model training for epoch in range(max_epochs): # loop over epochs train_reader.reset() while train_reader.has_more(): videos, labels, current_minibatch = train_reader.next_minibatch(minibatch_size) trainer.train_minibatch({input_var : videos, label_var : labels}) trainer.summarize_training_progress() # Test data for trained model epoch_size = 332 minibatch_size = 2 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 minibatch_index = 0 test_reader.reset() while test_reader.has_more(): videos, labels, current_minibatch = test_reader.next_minibatch(minibatch_size) # minibatch data to be trained with metric_numer += trainer.test_minibatch({input_var : videos, label_var : labels}) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom)) print("") return metric_numer/metric_denom
def convnet_cifar10(debug_output=False): set_computation_network_trace_level(0) image_height = 32 image_width = 32 num_channels = 3 input_dim = image_height * image_width * num_channels num_output_classes = 10 # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width), np.float32) label_var = input_variable(num_output_classes, np.float32) # Instantiate the feedforward classification model input_removemean = minus(input_var, constant(128)) scaled_input = element_times(constant(0.00390625), input_removemean) with default_options(activation=relu, pad=True): z = Sequential([ LayerStack( 2, lambda: [ Convolution((3, 3), 64), Convolution((3, 3), 64), MaxPooling((3, 3), (2, 2)) ]), LayerStack(2, lambda i: [Dense([256, 128][i]), Dropout(0.5)]), Dense(num_output_classes, activation=None) ])(scaled_input) ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) reader_train = create_reader( os.path.join(data_path, 'Train_cntk_text.txt'), True, input_dim, num_output_classes) # training config epoch_size = 50000 # for now we manually specify epoch size minibatch_size = 64 # Set learning parameters lr_per_sample = [0.0015625] * 10 + [0.00046875] * 10 + [0.00015625] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample) momentum_time_constant = [0] * 20 + [-minibatch_size / np.log(0.9)] mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant, epoch_size=epoch_size) l2_reg_weight = 0.002 # Instantiate the trainer object to drive the model training learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight) trainer = Trainer(z, ce, pe, learner) # define mapping from reader streams to network inputs input_map = { input_var: reader_train.streams.features, label_var: reader_train.streams.labels } log_number_of_parameters(z) print() progress_printer = ProgressPrinter(tag='Training') # Get minibatches of images to train with and perform model training max_epochs = 30 for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = reader_train.next_minibatch( min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch. trainer.train_minibatch(data) # update model with it sample_count += trainer.previous_minibatch_sample_count # count samples processed so far progress_printer.update_with_trainer( trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) persist.save_model( z, os.path.join(model_path, "ConvNet_CIFAR10_{}.dnn".format(epoch))) # Load test data reader_test = create_reader(os.path.join(data_path, 'Test_cntk_text.txt'), False, input_dim, num_output_classes) input_map = { input_var: reader_test.streams.features, label_var: reader_test.streams.labels } # Test data for trained model epoch_size = 10000 minibatch_size = 16 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 while sample_count < epoch_size: current_minibatch = min(minibatch_size, epoch_size - sample_count) # Fetch next test min batch. data = reader_test.next_minibatch(current_minibatch, input_map=input_map) # minibatch data to be trained with metric_numer += trainer.test_minibatch(data) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. sample_count += data[label_var].num_samples minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format( minibatch_index + 1, (metric_numer * 100.0) / metric_denom, metric_denom)) print("") return metric_numer / metric_denom
def train_and_evaluate(reader_train, reader_test, max_epochs): # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width)) label_var = input_variable((num_classes)) # apply model to input z = create_vgg9_model(input_var, 10) # # Training action # # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) # training config epoch_size = 50000 minibatch_size = 64 # For basic model lr_per_sample = [0.00015625]*10+[0.000046875]*10+[0.0000156] momentum_per_sample = 0.9 ** (1.0 / minibatch_size) # BUGBUG: why does this work? Should be as time const, no? l2_reg_weight = 0.03 # trainer object lr_schedule = learning_rate_schedule(lr_per_sample, units=epoch_size) learner = momentum_sgd(z.parameters, lr_schedule, momentum_per_sample, l2_regularization_weight = l2_reg_weight) trainer = Trainer(z, ce, pe, learner) # define mapping from reader streams to network inputs input_map = { input_var: reader_train.streams.features, label_var: reader_train.streams.labels } log_number_of_parameters(z) ; print() progress_printer = ProgressPrinter(tag='Training') # perform model training for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = reader_train.next_minibatch(min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch. trainer.train_minibatch(data) # update model with it sample_count += data[label_var].num_samples # count samples processed so far progress_printer.update_with_trainer(trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) # # Evaluation action # epoch_size = 10000 minibatch_size = 16 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 #progress_printer = ProgressPrinter(freq=100, first=10, tag='Eval') while sample_count < epoch_size: current_minibatch = min(minibatch_size, epoch_size - sample_count) # Fetch next test min batch. data = reader_test.next_minibatch(current_minibatch, input_map=input_map) # minibatch data to be trained with metric_numer += trainer.test_minibatch(data) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. sample_count += data[label_var].num_samples minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.1f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom)) print("")
def train_lm(training_file, max_num_minibatches): # load the data and vocab data, char_to_ix, ix_to_char, data_size, vocab_dim = load_data_and_vocab( training_file) # Model the source and target inputs to the model input_sequence, label_sequence = create_inputs(vocab_dim) # create the model model = create_model(vocab_dim) # and apply it to the input sequence z = model(input_sequence) # setup the criterions (loss and metric) ce = cross_entropy_with_softmax(z, label_sequence) errs = classification_error(z, label_sequence) # Instantiate the trainer object to drive the model training lr_per_sample = learning_rate_schedule(0.001, UnitType.sample) momentum_time_constant = momentum_as_time_constant_schedule(1100) clipping_threshold_per_sample = 5.0 gradient_clipping_with_truncation = True learner = momentum_sgd( z.parameters, lr_per_sample, momentum_time_constant, gradient_clipping_threshold_per_sample=clipping_threshold_per_sample, gradient_clipping_with_truncation=gradient_clipping_with_truncation) trainer = Trainer(z, (ce, errs), learner) sample_freq = 1000 epochs = 50 minibatches_per_epoch = int((data_size / minibatch_size)) minibatches = min(epochs * minibatches_per_epoch, max_num_minibatches) # print out some useful training information log_number_of_parameters(z) print() progress_printer = ProgressPrinter(freq=100, tag='Training') e = 0 p = 0 for i in range(0, minibatches): if p + minibatch_size + 1 >= data_size: p = 0 e += 1 model_filename = "models/shakespeare_epoch%d.dnn" % e z.save(model_filename) print("Saved model to '%s'" % model_filename) # get the data features, labels = get_data(p, minibatch_size, data, char_to_ix, vocab_dim) # Specify the mapping of input variables in the model to actual minibatch data to be trained with # If it's the start of the data, we specify that we are looking at a new sequence (True) mask = [False] if p == 0: mask = [True] arguments = ({input_sequence: features, label_sequence: labels}, mask) trainer.train_minibatch(arguments) progress_printer.update_with_trainer(trainer, with_metric=True) # log progress if i % sample_freq == 0: print(sample(z, ix_to_char, vocab_dim, char_to_ix)) p += minibatch_size # Do a final save of the model model_filename = "models/shakespeare_epoch%d.dnn" % e z.save(model_filename)
def sequence_to_sequence_translator(debug_output=False, run_test=False): input_vocab_dim = 69 label_vocab_dim = 69 # network complexity; initially low for faster testing hidden_dim = 256 num_layers = 1 # Source and target inputs to the model batch_axis = Axis.default_batch_axis() input_seq_axis = Axis('inputAxis') label_seq_axis = Axis('labelAxis') input_dynamic_axes = [batch_axis, input_seq_axis] raw_input = input_variable(shape=(input_vocab_dim), dynamic_axes=input_dynamic_axes, name='raw_input') label_dynamic_axes = [batch_axis, label_seq_axis] raw_labels = input_variable(shape=(label_vocab_dim), dynamic_axes=label_dynamic_axes, name='raw_labels') # Instantiate the sequence to sequence translation model input_sequence = raw_input # Drop the sentence start token from the label, for decoder training label_sequence = slice(raw_labels, label_seq_axis, 1, 0) # <s> A B C </s> --> A B C </s> label_sentence_start = sequence.first(raw_labels) # <s> is_first_label = sequence.is_first(label_sequence) # <s> 0 0 0 ... label_sentence_start_scattered = sequence.scatter(label_sentence_start, is_first_label) # Encoder encoder_outputH = stabilize(input_sequence) for i in range(0, num_layers): (encoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( encoder_outputH.output, hidden_dim, hidden_dim, future_value, future_value) thought_vectorH = sequence.first(encoder_outputH) thought_vectorC = sequence.first(encoder_outputC) thought_vector_broadcastH = sequence.broadcast_as(thought_vectorH, label_sequence) thought_vector_broadcastC = sequence.broadcast_as(thought_vectorC, label_sequence) # Decoder decoder_history_hook = alias( label_sequence, name='decoder_history_hook') # copy label_sequence decoder_input = element_select(is_first_label, label_sentence_start_scattered, past_value(decoder_history_hook)) decoder_outputH = stabilize(decoder_input) for i in range(0, num_layers): if (i > 0): recurrence_hookH = past_value recurrence_hookC = past_value else: isFirst = sequence.is_first(label_sequence) recurrence_hookH = lambda operand: element_select( isFirst, thought_vector_broadcastH, past_value(operand)) recurrence_hookC = lambda operand: element_select( isFirst, thought_vector_broadcastC, past_value(operand)) (decoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( decoder_outputH.output, hidden_dim, hidden_dim, recurrence_hookH, recurrence_hookC) decoder_output = decoder_outputH # Softmax output layer z = linear_layer(stabilize(decoder_output), label_vocab_dim) # Criterion nodes ce = cross_entropy_with_softmax(z, label_sequence) errs = classification_error(z, label_sequence) # network output for decoder history net_output = hardmax(z) # make a clone of the graph where the ground truth is replaced by the network output ng = z.clone(CloneMethod.share, {decoder_history_hook.output: net_output.output}) # Instantiate the trainer object to drive the model training lr = 0.007 minibatch_size = 72 momentum_time_constant = 1100 m_schedule = momentum_schedule(momentum_time_constant) clipping_threshold_per_sample = 2.3 gradient_clipping_with_truncation = True learner = momentum_sgd(z.parameters, lr, m_schedule, clipping_threshold_per_sample, gradient_clipping_with_truncation) trainer = Trainer(z, ce, errs, learner) # setup data rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.train-dev-20-21.ctf" train_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) valid_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "tiny.ctf") feature_stream_name = 'features' labels_stream_name = 'labels' # readers randomize_data = True if run_test: randomize_data = False # because we want to get an exact error train_reader = text_format_minibatch_source(train_path, [ StreamConfiguration(feature_stream_name, input_vocab_dim, True, 'S0'), StreamConfiguration(labels_stream_name, label_vocab_dim, True, 'S1') ], randomize=randomize_data) features_si_tr = train_reader.stream_info(feature_stream_name) labels_si_tr = train_reader.stream_info(labels_stream_name) valid_reader = text_format_minibatch_source(valid_path, [ StreamConfiguration(feature_stream_name, input_vocab_dim, True, 'S0'), StreamConfiguration(labels_stream_name, label_vocab_dim, True, 'S1') ], randomize=False) features_si_va = valid_reader.stream_info(feature_stream_name) labels_si_va = valid_reader.stream_info(labels_stream_name) # get the vocab for printing output sequences in plaintext rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.mapping" vocab_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) vocab = [w.strip() for w in open(vocab_path).readlines()] i2w = {i: ch for i, ch in enumerate(vocab)} # Get minibatches of sequences to train with and perform model training i = 0 mbs = 0 epoch_size = 908241 max_epochs = 10 training_progress_output_freq = 500 # make things more basic for running a quicker test if run_test: epoch_size = 5000 max_epochs = 1 training_progress_output_freq = 30 for epoch in range(max_epochs): loss_numer = 0 metric_numer = 0 denom = 0 while i < (epoch + 1) * epoch_size: # get next minibatch of training data mb_train = train_reader.next_minibatch(minibatch_size) train_args = { 'raw_input': mb_train[features_si_tr], 'raw_labels': mb_train[labels_si_tr] } trainer.train_minibatch(train_args) # collect epoch-wide stats samples = trainer.previous_minibatch_sample_count loss_numer += trainer.previous_minibatch_loss_average * samples metric_numer += trainer.previous_minibatch_evaluation_average * samples denom += samples # every N MBs evaluate on a test sequence to visually show how we're doing if mbs % training_progress_output_freq == 0: mb_valid = valid_reader.next_minibatch(minibatch_size) valid_args = { 'raw_input': mb_valid[features_si_va], 'raw_labels': mb_valid[labels_si_va] } e = ng.eval(valid_args) print_sequences(e, i2w) print_training_progress(trainer, mbs, training_progress_output_freq) i += mb_train[labels_si_tr].num_samples mbs += 1 print("--- EPOCH %d DONE: loss = %f, errs = %f ---" % (epoch, loss_numer / denom, 100.0 * (metric_numer / denom))) # now setup a test run rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.test.ctf" test_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) test_reader = text_format_minibatch_source(test_path, [ StreamConfiguration(feature_stream_name, input_vocab_dim, True, 'S0'), StreamConfiguration(labels_stream_name, label_vocab_dim, True, 'S1') ], 10000, randomize=False) features_si_te = test_reader.stream_info(feature_stream_name) labels_si_te = test_reader.stream_info(labels_stream_name) test_minibatch_size = 1024 # Get minibatches of sequences to test and perform testing i = 0 total_error = 0.0 while True: mb = test_reader.next_minibatch(test_minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual # minibatch data to be tested with arguments = { raw_input: mb[features_si_te], raw_labels: mb[labels_si_te] } mb_error = trainer.test_minibatch(arguments) total_error += mb_error if debug_output: print("Minibatch {}, Error {} ".format(i, mb_error)) i += 1 # Average of evaluation errors of all test minibatches return total_error / i
def sequence_to_sequence_translator(debug_output=False, run_test=False): input_vocab_dim = 69 label_vocab_dim = 69 # network complexity; initially low for faster testing hidden_dim = 256 num_layers = 1 # Source and target inputs to the model batch_axis = Axis.default_batch_axis() input_seq_axis = Axis('inputAxis') label_seq_axis = Axis('labelAxis') input_dynamic_axes = [batch_axis, input_seq_axis] raw_input = input_variable(shape=(input_vocab_dim), dynamic_axes=input_dynamic_axes, name='raw_input') label_dynamic_axes = [batch_axis, label_seq_axis] raw_labels = input_variable(shape=(label_vocab_dim), dynamic_axes=label_dynamic_axes, name='raw_labels') # Instantiate the sequence to sequence translation model input_sequence = raw_input # Drop the sentence start token from the label, for decoder training label_sequence = sequence.slice(raw_labels, 1, 0) # <s> A B C </s> --> A B C </s> label_sentence_start = sequence.first(raw_labels) # <s> is_first_label = sequence.is_first(label_sequence) # <s> 0 0 0 ... label_sentence_start_scattered = sequence.scatter(label_sentence_start, is_first_label) # Encoder encoder_outputH = stabilize(input_sequence) for i in range(0, num_layers): (encoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( encoder_outputH.output, hidden_dim, hidden_dim, future_value, future_value) thought_vectorH = sequence.first(encoder_outputH) thought_vectorC = sequence.first(encoder_outputC) thought_vector_broadcastH = sequence.broadcast_as(thought_vectorH, label_sequence) thought_vector_broadcastC = sequence.broadcast_as(thought_vectorC, label_sequence) # Decoder decoder_history_hook = alias( label_sequence, name='decoder_history_hook') # copy label_sequence decoder_input = element_select(is_first_label, label_sentence_start_scattered, past_value(decoder_history_hook)) decoder_outputH = stabilize(decoder_input) for i in range(0, num_layers): if (i > 0): recurrence_hookH = past_value recurrence_hookC = past_value else: isFirst = sequence.is_first(label_sequence) recurrence_hookH = lambda operand: element_select( isFirst, thought_vector_broadcastH, past_value(operand)) recurrence_hookC = lambda operand: element_select( isFirst, thought_vector_broadcastC, past_value(operand)) (decoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( decoder_outputH.output, hidden_dim, hidden_dim, recurrence_hookH, recurrence_hookC) decoder_output = decoder_outputH # Softmax output layer z = linear_layer(stabilize(decoder_output), label_vocab_dim) # Criterion nodes ce = cross_entropy_with_softmax(z, label_sequence) errs = classification_error(z, label_sequence) # network output for decoder history net_output = hardmax(z) # make a clone of the graph where the ground truth is replaced by the network output ng = z.clone(CloneMethod.share, {decoder_history_hook.output: net_output.output}) # Instantiate the trainer object to drive the model training lr_per_minibatch = learning_rate_schedule(0.5, UnitType.minibatch) momentum_time_constant = momentum_as_time_constant_schedule(1100) clipping_threshold_per_sample = 2.3 gradient_clipping_with_truncation = True learner = momentum_sgd( z.parameters, lr_per_minibatch, momentum_time_constant, gradient_clipping_threshold_per_sample=clipping_threshold_per_sample, gradient_clipping_with_truncation=gradient_clipping_with_truncation) trainer = Trainer(z, ce, errs, learner) # setup data train_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "Data", "cmudict-0.7b.train-dev-20-21.ctf") valid_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "Data", "tiny.ctf") # readers randomize_data = True if run_test: randomize_data = False # because we want to get an exact error train_reader = create_reader(train_path, randomize_data, input_vocab_dim, label_vocab_dim) train_bind = { raw_input: train_reader.streams.features, raw_labels: train_reader.streams.labels } # get the vocab for printing output sequences in plaintext vocab_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "Data", "cmudict-0.7b.mapping") vocab = [w.strip() for w in open(vocab_path).readlines()] i2w = {i: ch for i, ch in enumerate(vocab)} # Get minibatches of sequences to train with and perform model training i = 0 mbs = 0 minibatch_size = 72 epoch_size = 908241 max_epochs = 10 training_progress_output_freq = 500 # make things more basic for running a quicker test if run_test: epoch_size = 5000 max_epochs = 1 training_progress_output_freq = 30 valid_reader = create_reader(valid_path, False, input_vocab_dim, label_vocab_dim) valid_bind = { find_arg_by_name('raw_input', ng): valid_reader.streams.features, find_arg_by_name('raw_labels', ng): valid_reader.streams.labels } for epoch in range(max_epochs): loss_numer = 0 metric_numer = 0 denom = 0 while i < (epoch + 1) * epoch_size: # get next minibatch of training data mb_train = train_reader.next_minibatch(minibatch_size, input_map=train_bind) trainer.train_minibatch(mb_train) # collect epoch-wide stats samples = trainer.previous_minibatch_sample_count loss_numer += trainer.previous_minibatch_loss_average * samples metric_numer += trainer.previous_minibatch_evaluation_average * samples denom += samples # every N MBs evaluate on a test sequence to visually show how we're doing if mbs % training_progress_output_freq == 0: mb_valid = valid_reader.next_minibatch(minibatch_size, input_map=valid_bind) e = ng.eval(mb_valid) print_sequences(e, i2w) print_training_progress(trainer, mbs, training_progress_output_freq) i += mb_train[raw_labels].num_samples mbs += 1 print("--- EPOCH %d DONE: loss = %f, errs = %f ---" % (epoch, loss_numer / denom, 100.0 * (metric_numer / denom))) error1 = translator_test_error(z, trainer, input_vocab_dim, label_vocab_dim) save_model(z, "seq2seq.dnn") z = load_model("seq2seq.dnn") label_seq_axis = Axis('labelAxis') label_sequence = sequence.slice(find_arg_by_name('raw_labels', z), 1, 0) ce = cross_entropy_with_softmax(z, label_sequence) errs = classification_error(z, label_sequence) trainer = Trainer(z, ce, errs, [ momentum_sgd(z.parameters, lr_per_minibatch, momentum_time_constant, clipping_threshold_per_sample, gradient_clipping_with_truncation) ]) error2 = translator_test_error(z, trainer, input_vocab_dim, label_vocab_dim) assert error1 == error2 return error1
def train_and_evaluate(reader_train, reader_test, max_epochs): # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width)) label_var = input_variable((num_classes)) # Normalize the input feature_scale = 1.0 / 256.0 input_var_norm = element_times(feature_scale, input_var) # apply model to input z = create_vgg9_model(input_var_norm, 10) # # Training action # # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) # training config epoch_size = 50000 minibatch_size = 64 # Set learning parameters lr_per_minibatch = learning_rate_schedule( [0.01] * 10 + [0.003] * 10 + [0.001], epoch_size, UnitType.minibatch) momentum_time_constant = momentum_as_time_constant_schedule( -minibatch_size / np.log(0.9)) l2_reg_weight = 0.0001 # trainer object learner = momentum_sgd(z.parameters, lr=lr_per_minibatch, momentum=momentum_time_constant, l2_regularization_weight=l2_reg_weight) trainer = Trainer(z, ce, pe, learner) # define mapping from reader streams to network inputs input_map = { input_var: reader_train.streams.features, label_var: reader_train.streams.labels } log_number_of_parameters(z) print() progress_printer = ProgressPrinter(tag='Training') # perform model training for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = reader_train.next_minibatch( min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch. trainer.train_minibatch(data) # update model with it sample_count += data[ label_var].num_samples # count samples processed so far progress_printer.update_with_trainer( trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) # # Evaluation action # epoch_size = 10000 minibatch_size = 16 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 #progress_printer = ProgressPrinter(freq=100, first=10, tag='Eval') while sample_count < epoch_size: current_minibatch = min(minibatch_size, epoch_size - sample_count) # Fetch next test min batch. data = reader_test.next_minibatch(current_minibatch, input_map=input_map) # minibatch data to be trained with metric_numer += trainer.test_minibatch(data) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. sample_count += data[label_var].num_samples minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.1f}% * {}".format( minibatch_index + 1, (metric_numer * 100.0) / metric_denom, metric_denom)) print("") # return evaluation error. return metric_numer / metric_denom
def train_and_evaluate(reader, reader_test, model, epoch_size=50000, max_epochs=5): # declare the model's input dimension # Training does not require this, but it is needed for deployment. model.update_signature((num_channels, image_height, image_width)) # criterion function. This is what is being trained trained. # Model gets "sandwiched" between normalization (not part of model proper) and criterion. criterion = create_criterion_function(model, normalize=lambda x: x / 256) #debughelpers.dump_function(criterion, 'criterion') #from cntk.graph import plot #plot(criterion, filename=os.path.join(model_path, "ConvNet_CIFAR10_DataAug.pdf")) # iteration parameters minibatch_size = 64 #epoch_size = 1000 ; max_epochs = 1 # for faster testing # learning parameters learner = momentum_sgd( model.parameters, lr=learning_rate_schedule([0.0015625] * 20 + [0.00046875] * 20 + [0.00015625] * 20 + [0.000046875] * 10 + [0.000015625], unit=UnitType.sample, epoch_size=epoch_size), momentum=momentum_as_time_constant_schedule([0] * 20 + [600] * 20 + [1200], epoch_size=epoch_size), l2_regularization_weight=0.002) # trainer object trainer = Trainer(None, criterion, learner) # perform model training log_number_of_parameters(model) print() progress_printer = ProgressPrinter(tag='Training') for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch mb = reader.next_minibatch( min(minibatch_size, epoch_size - sample_count)) # fetch minibatch. #trainer.train_minibatch(mb[reader.streams.features], mb[reader.streams.labels]) trainer.train_minibatch({ criterion.arguments[0]: mb[reader.streams.features], criterion.arguments[1]: mb[reader.streams.labels] }) sample_count += mb[ reader.streams. labels].num_samples # count samples processed so far progress_printer.update_with_trainer( trainer, with_metric=True) # log progress loss, metric, actual_samples = progress_printer.epoch_summary( with_metric=True) model.save( os.path.join(model_path, "ConvNet_CIFAR10_DataAug_{}.dnn".format(epoch))) progress_printer.epoch_summary(with_metric=True) # TODO: we should be done here #return metric_numer/metric_denom ### Evaluation action # evaluate with current Trainer instance; just to make sure we save and load the model correctly and BN works now --TODO: delete once confirmed epoch_size = 10000 minibatch_size = 16 metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 while sample_count < epoch_size: mbsize = min(minibatch_size, epoch_size - sample_count) mb = reader_test.next_minibatch(mbsize) metric_numer += mbsize * trainer.test_minibatch( { criterion.arguments[0]: mb[reader_test.streams.features], criterion.arguments[1]: mb[reader_test.streams.labels] }) metric_denom += mbsize sample_count += mb[reader_test.streams.labels].num_samples minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format( minibatch_index + 1, (metric_numer * 100.0) / metric_denom, metric_denom)) print("") # return evaluation error. return loss, metric # return values from last epoch
def train_model(base_model_file, feature_node_name, last_hidden_node_name, image_width, image_height, num_channels, num_classes, train_map_file, num_epochs, max_images=-1, freeze=False): epoch_size = sum(1 for line in open(train_map_file)) if max_images > 0: epoch_size = min(epoch_size, max_images) # Create the minibatch source and input variables minibatch_source = create_mb_source(train_map_file, image_width, image_height, num_channels, num_classes) image_input = input_variable((num_channels, image_height, image_width)) label_input = input_variable(num_classes) # Define mapping from reader streams to network inputs input_map = { image_input: minibatch_source[features_stream_name], label_input: minibatch_source[label_stream_name] } # Instantiate the transfer learning model and loss function tl_model = create_model(base_model_file, feature_node_name, last_hidden_node_name, num_classes, image_input, freeze) ce = cross_entropy_with_softmax(tl_model, label_input) pe = classification_error(tl_model, label_input) # Instantiate the trainer object lr_schedule = learning_rate_schedule(lr_per_mb, unit=UnitType.minibatch) mm_schedule = momentum_schedule(momentum_per_mb) learner = momentum_sgd(tl_model.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight) trainer = Trainer(tl_model, (ce, pe), learner) # Get minibatches of images and perform model training print( "Training transfer learning model for {0} epochs (epoch_size = {1}).". format(num_epochs, epoch_size)) log_number_of_parameters(tl_model) progress_printer = ProgressPrinter(tag='Training', num_epochs=num_epochs) for epoch in range(num_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = minibatch_source.next_minibatch(min( mb_size, epoch_size - sample_count), input_map=input_map) trainer.train_minibatch(data) # update model with it sample_count += trainer.previous_minibatch_sample_count # count samples processed so far progress_printer.update_with_trainer( trainer, with_metric=True) # log progress if sample_count % (100 * mb_size) == 0: print("Processed {0} samples".format(sample_count)) progress_printer.epoch_summary(with_metric=True) return tl_model
def convnet_mnist(debug_output=False): image_height = 28 image_width = 28 num_channels = 1 input_dim = image_height * image_width * num_channels num_output_classes = 10 # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width), np.float32) label_var = input_variable(num_output_classes, np.float32) # Instantiate the feedforward classification model scaled_input = element_times(constant(0.00390625), input_var) with default_options (activation=relu, pad=False): conv1 = Convolution((5,5), 32, pad=True)(scaled_input) pool1 = MaxPooling((3,3), (2,2))(conv1) conv2 = Convolution((3,3), 48)(pool1) pool2 = MaxPooling((3,3), (2,2))(conv2) conv3 = Convolution((3,3), 64)(pool2) f4 = Dense(96)(conv3) drop4 = Dropout(0.5)(f4) z = Dense(num_output_classes, activation=None)(drop4) ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) reader_train = create_reader(os.path.join(data_path, 'Train-28x28_cntk_text.txt'), True, input_dim, num_output_classes) # training config epoch_size = 60000 # for now we manually specify epoch size minibatch_size = 128 # Set learning parameters lr_per_sample = [0.001]*10+[0.0005]*10+[0.0001] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size) momentum_time_constant = [0]*5+[1024] # Instantiate the trainer object to drive the model training learner = momentum_sgd(z.parameters, lr_schedule, momentum_time_constant) trainer = Trainer(z, ce, pe, learner) # define mapping from reader streams to network inputs input_map = { input_var : reader_train.streams.features, label_var : reader_train.streams.labels } log_number_of_parameters(z) ; print() progress_printer = ProgressPrinter(tag='Training') # Get minibatches of images to train with and perform model training max_epochs = 40 for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = reader_train.next_minibatch(min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch. trainer.train_minibatch(data) # update model with it sample_count += data[label_var].num_samples # count samples processed so far progress_printer.update_with_trainer(trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) persist.save_model(z, os.path.join(model_path, "ConvNet_MNIST_{}.dnn".format(epoch))) # Load test data reader_test = create_reader(os.path.join(data_path, 'Test-28x28_cntk_text.txt'), False, input_dim, num_output_classes) input_map = { input_var : reader_test.streams.features, label_var : reader_test.streams.labels } # Test data for trained model epoch_size = 10000 minibatch_size = 1024 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 while sample_count < epoch_size: current_minibatch = min(minibatch_size, epoch_size - sample_count) # Fetch next test min batch. data = reader_test.next_minibatch(current_minibatch, input_map=input_map) # minibatch data to be trained with metric_numer += trainer.test_minibatch(data) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. sample_count += data[label_var].num_samples minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom)) print("") return metric_numer/metric_denom
def sequence_to_sequence_translator(debug_output=False, run_test=False): input_vocab_dim = 69 label_vocab_dim = 69 # network complexity; initially low for faster testing hidden_dim = 256 num_layers = 1 # Source and target inputs to the model batch_axis = Axis.default_batch_axis() input_seq_axis = Axis('inputAxis') label_seq_axis = Axis('labelAxis') input_dynamic_axes = [batch_axis, input_seq_axis] raw_input = input_variable( shape=(input_vocab_dim), dynamic_axes=input_dynamic_axes, name='raw_input') label_dynamic_axes = [batch_axis, label_seq_axis] raw_labels = input_variable( shape=(label_vocab_dim), dynamic_axes=label_dynamic_axes, name='raw_labels') # Instantiate the sequence to sequence translation model input_sequence = raw_input # Drop the sentence start token from the label, for decoder training label_sequence = sequence.slice(raw_labels, 1, 0) # <s> A B C </s> --> A B C </s> label_sentence_start = sequence.first(raw_labels) # <s> is_first_label = sequence.is_first(label_sequence) # <s> 0 0 0 ... label_sentence_start_scattered = sequence.scatter( label_sentence_start, is_first_label) # Encoder encoder_outputH = stabilize(input_sequence) for i in range(0, num_layers): (encoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( encoder_outputH.output, hidden_dim, hidden_dim, future_value, future_value) thought_vectorH = sequence.first(encoder_outputH) thought_vectorC = sequence.first(encoder_outputC) thought_vector_broadcastH = sequence.broadcast_as( thought_vectorH, label_sequence) thought_vector_broadcastC = sequence.broadcast_as( thought_vectorC, label_sequence) # Decoder decoder_history_hook = alias(label_sequence, name='decoder_history_hook') # copy label_sequence decoder_input = element_select(is_first_label, label_sentence_start_scattered, past_value( decoder_history_hook)) decoder_outputH = stabilize(decoder_input) for i in range(0, num_layers): if (i > 0): recurrence_hookH = past_value recurrence_hookC = past_value else: isFirst = sequence.is_first(label_sequence) recurrence_hookH = lambda operand: element_select( isFirst, thought_vector_broadcastH, past_value(operand)) recurrence_hookC = lambda operand: element_select( isFirst, thought_vector_broadcastC, past_value(operand)) (decoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( decoder_outputH.output, hidden_dim, hidden_dim, recurrence_hookH, recurrence_hookC) decoder_output = decoder_outputH # Softmax output layer z = linear_layer(stabilize(decoder_output), label_vocab_dim) # Criterion nodes ce = cross_entropy_with_softmax(z, label_sequence) errs = classification_error(z, label_sequence) # network output for decoder history net_output = hardmax(z) # make a clone of the graph where the ground truth is replaced by the network output ng = z.clone(CloneMethod.share, {decoder_history_hook.output : net_output.output}) # Instantiate the trainer object to drive the model training lr_per_minibatch = learning_rate_schedule(0.5, UnitType.minibatch) momentum_time_constant = momentum_as_time_constant_schedule(1100) clipping_threshold_per_sample = 2.3 gradient_clipping_with_truncation = True learner = momentum_sgd(z.parameters, lr_per_minibatch, momentum_time_constant, gradient_clipping_threshold_per_sample=clipping_threshold_per_sample, gradient_clipping_with_truncation=gradient_clipping_with_truncation) trainer = Trainer(z, ce, errs, learner) # setup data train_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "Data", "cmudict-0.7b.train-dev-20-21.ctf") valid_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "Data", "tiny.ctf") # readers randomize_data = True if run_test: randomize_data = False # because we want to get an exact error train_reader = create_reader(train_path, randomize_data, input_vocab_dim, label_vocab_dim) train_bind = { raw_input : train_reader.streams.features, raw_labels : train_reader.streams.labels } # get the vocab for printing output sequences in plaintext vocab_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", "Data", "cmudict-0.7b.mapping") vocab = [w.strip() for w in open(vocab_path).readlines()] i2w = { i:ch for i,ch in enumerate(vocab) } # Get minibatches of sequences to train with and perform model training i = 0 mbs = 0 minibatch_size = 72 epoch_size = 908241 max_epochs = 10 training_progress_output_freq = 500 # make things more basic for running a quicker test if run_test: epoch_size = 5000 max_epochs = 1 training_progress_output_freq = 30 valid_reader = create_reader(valid_path, False, input_vocab_dim, label_vocab_dim) valid_bind = { find_arg_by_name('raw_input',ng) : valid_reader.streams.features, find_arg_by_name('raw_labels',ng) : valid_reader.streams.labels } for epoch in range(max_epochs): loss_numer = 0 metric_numer = 0 denom = 0 while i < (epoch+1) * epoch_size: # get next minibatch of training data mb_train = train_reader.next_minibatch(minibatch_size, input_map=train_bind) trainer.train_minibatch(mb_train) # collect epoch-wide stats samples = trainer.previous_minibatch_sample_count loss_numer += trainer.previous_minibatch_loss_average * samples metric_numer += trainer.previous_minibatch_evaluation_average * samples denom += samples # every N MBs evaluate on a test sequence to visually show how we're doing if mbs % training_progress_output_freq == 0: mb_valid = valid_reader.next_minibatch(minibatch_size, input_map=valid_bind) e = ng.eval(mb_valid) print_sequences(e, i2w) print_training_progress(trainer, mbs, training_progress_output_freq) i += mb_train[raw_labels].num_samples mbs += 1 print("--- EPOCH %d DONE: loss = %f, errs = %f ---" % (epoch, loss_numer/denom, 100.0*(metric_numer/denom))) error1 = translator_test_error(z, trainer, input_vocab_dim, label_vocab_dim) z.save_model("seq2seq.dnn") z.restore_model("seq2seq.dnn") label_seq_axis = Axis('labelAxis') label_sequence = sequence.slice(find_arg_by_name('raw_labels',z), 1, 0) ce = cross_entropy_with_softmax(z, label_sequence) errs = classification_error(z, label_sequence) trainer = Trainer(z, ce, errs, [momentum_sgd( z.parameters, lr_per_minibatch, momentum_time_constant, clipping_threshold_per_sample, gradient_clipping_with_truncation)]) error2 = translator_test_error(z, trainer, input_vocab_dim, label_vocab_dim) assert error1 == error2 return error1
def convnet_cifar10(debug_output=False): set_computation_network_trace_level(0) image_height = 32 image_width = 32 num_channels = 3 input_dim = image_height * image_width * num_channels num_output_classes = 10 # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width), np.float32) label_var = input_variable(num_output_classes, np.float32) # Instantiate the feedforward classification model input_removemean = minus(input_var, constant(128)) scaled_input = element_times(constant(0.00390625), input_removemean) with default_options (activation=relu, pad=True): z = Sequential([ LayerStack(2, lambda : [ Convolution((3,3), 64), Convolution((3,3), 64), MaxPooling((3,3), (2,2)) ]), LayerStack(2, lambda i: [ Dense([256,128][i]), Dropout(0.5) ]), Dense(num_output_classes, activation=None) ])(scaled_input) ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) reader_train = create_reader(os.path.join(data_path, 'Train_cntk_text.txt'), True, input_dim, num_output_classes) # training config epoch_size = 50000 # for now we manually specify epoch size minibatch_size = 64 # Set learning parameters lr_per_sample = [0.0015625]*10+[0.00046875]*10+[0.00015625] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size) momentum_time_constant = [0]*20+[-minibatch_size/np.log(0.9)] mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant, epoch_size=epoch_size) l2_reg_weight = 0.002 # Instantiate the trainer object to drive the model training learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule, l2_regularization_weight = l2_reg_weight) trainer = Trainer(z, ce, pe, learner) # define mapping from reader streams to network inputs input_map = { input_var : reader_train.streams.features, label_var : reader_train.streams.labels } log_number_of_parameters(z) ; print() progress_printer = ProgressPrinter(tag='Training') # Get minibatches of images to train with and perform model training max_epochs = 30 for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = reader_train.next_minibatch(min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch. trainer.train_minibatch(data) # update model with it sample_count += data[label_var].num_samples # count samples processed so far progress_printer.update_with_trainer(trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) persist.save_model(z, os.path.join(model_path, "ConvNet_CIFAR10_{}.dnn".format(epoch))) # Load test data reader_test = create_reader(os.path.join(data_path, 'Test_cntk_text.txt'), False, input_dim, num_output_classes) input_map = { input_var : reader_test.streams.features, label_var : reader_test.streams.labels } # Test data for trained model epoch_size = 10000 minibatch_size = 16 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 while sample_count < epoch_size: current_minibatch = min(minibatch_size, epoch_size - sample_count) # Fetch next test min batch. data = reader_test.next_minibatch(current_minibatch, input_map=input_map) # minibatch data to be trained with metric_numer += trainer.test_minibatch(data) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. sample_count += data[label_var].num_samples minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom)) print("") return metric_numer/metric_denom
def train_and_evaluate(reader_train, reader_test, max_epochs): # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width)) label_var = input_variable((num_classes)) # Normalize the input feature_scale = 1.0 / 256.0 input_var_norm = element_times(feature_scale, input_var) # apply model to input z = create_vgg9_model(input_var_norm, 10) # # Training action # # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) # training config epoch_size = 50000 minibatch_size = 64 # Set learning parameters lr_per_minibatch = learning_rate_schedule([0.01]*10 + [0.003]*10 + [0.001], epoch_size, UnitType.minibatch) momentum_time_constant = momentum_as_time_constant_schedule(-minibatch_size/np.log(0.9)) l2_reg_weight = 0.0001 # trainer object learner = momentum_sgd(z.parameters, lr = lr_per_minibatch, momentum = momentum_time_constant, l2_regularization_weight = l2_reg_weight) trainer = Trainer(z, ce, pe, learner) # define mapping from reader streams to network inputs input_map = { input_var: reader_train.streams.features, label_var: reader_train.streams.labels } log_number_of_parameters(z) ; print() progress_printer = ProgressPrinter(tag='Training') # perform model training for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = reader_train.next_minibatch(min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch. trainer.train_minibatch(data) # update model with it sample_count += data[label_var].num_samples # count samples processed so far progress_printer.update_with_trainer(trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) # # Evaluation action # epoch_size = 10000 minibatch_size = 16 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 #progress_printer = ProgressPrinter(freq=100, first=10, tag='Eval') while sample_count < epoch_size: current_minibatch = min(minibatch_size, epoch_size - sample_count) # Fetch next test min batch. data = reader_test.next_minibatch(current_minibatch, input_map=input_map) # minibatch data to be trained with metric_numer += trainer.test_minibatch(data) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. sample_count += data[label_var].num_samples minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.1f}% * {}".format(minibatch_index+1, (metric_numer*100.0)/metric_denom, metric_denom)) print("") # return evaluation error. return metric_numer/metric_denom
def train_and_evaluate(reader_train, reader_test, network_name, max_epochs, distributed_trainer, scale_up=False): set_computation_network_trace_level(0) # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width)) label_var = input_variable((num_classes)) # create model, and configure learning parameters if network_name == 'resnet20': z = create_cifar10_model(input_var, 3, num_classes) lr_per_mb = [1.0] * 80 + [0.1] * 40 + [0.01] elif network_name == 'resnet110': z = create_cifar10_model(input_var, 18, num_classes) lr_per_mb = [0.1] * 1 + [1.0] * 80 + [0.1] * 40 + [0.01] else: return RuntimeError("Unknown model name!") # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) # shared training parameters epoch_size = 50000 # for now we manually specify epoch size # NOTE: scaling up minibatch_size increases sample throughput. In 8-GPU machine, # ResNet110 samples-per-second is ~7x of single GPU, comparing to ~3x without scaling # up. However, bigger minimatch size on the same number of samples means less updates, # thus leads to higher training error. This is a trade-off of speed and accuracy minibatch_size = 128 * (len(distributed_trainer.communicator().workers()) if scale_up else 1) momentum_time_constant = -minibatch_size / np.log(0.9) l2_reg_weight = 0.0001 # Set learning parameters lr_per_sample = [lr / minibatch_size for lr in lr_per_mb] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample) mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant) # trainer object learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight) trainer = Trainer(z, ce, pe, learner, distributed_trainer) # define mapping from reader streams to network inputs input_map = { input_var: reader_train.streams.features, label_var: reader_train.streams.labels } log_number_of_parameters(z) print() progress_printer = ProgressPrinter(tag='Training') # perform model training for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = reader_train.next_minibatch( min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch. trainer.train_minibatch(data) # update model with it sample_count += trainer.previous_minibatch_sample_count # count samples processed so far progress_printer.update_with_trainer( trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) # save model only in worker0, otherwise there will be file write conflicts for multi GPU on the same machine if distributed_trainer.communicator().current_worker( ).global_rank == 0: z.save_model( os.path.join(model_path, network_name + "_{}.dnn".format(epoch))) # Evaluation parameters epoch_size = 10000 minibatch_size = 16 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 while sample_count < epoch_size: current_minibatch = min(minibatch_size, epoch_size - sample_count) # Fetch next test min batch. data = reader_test.next_minibatch(current_minibatch, input_map=input_map) # minibatch data to be trained with metric_numer += trainer.test_minibatch(data) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. sample_count += data[label_var].num_samples minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format( minibatch_index + 1, (metric_numer * 100.0) / metric_denom, metric_denom)) print("") return metric_numer / metric_denom
def main(base_folder, training_mode='majority', model_name='VGG13', max_epochs = 100): # create needed folders. output_model_path = os.path.join(base_folder, R'models') output_model_folder = os.path.join(output_model_path, model_name + '_' + training_mode) if not os.path.exists(output_model_folder): os.makedirs(output_model_folder) # creating logging file logging.basicConfig(filename = os.path.join(output_model_folder, "train.log"), filemode = 'w', level = logging.INFO) logging.getLogger().addHandler(logging.StreamHandler()) logging.info("Starting with training mode {} using {} model and max epochs {}.".format(training_mode, model_name, max_epochs)) # create the model num_classes = len(emotion_table) model = build_model(num_classes, model_name) # set the input variables. input_var = ct.input_variable((1, model.input_height, model.input_width), np.float32) label_var = ct.input_variable((num_classes), np.float32) # read FER+ dataset. logging.info("Loading data...") train_params = FERPlusParameters(num_classes, model.input_height, model.input_width, training_mode, False) test_and_val_params = FERPlusParameters(num_classes, model.input_height, model.input_width, "majority", True) train_data_reader = FERPlusReader.create(base_folder, train_folders, "label.csv", train_params) val_data_reader = FERPlusReader.create(base_folder, valid_folders, "label.csv", test_and_val_params) test_data_reader = FERPlusReader.create(base_folder, test_folders, "label.csv", test_and_val_params) # print summary of the data. display_summary(train_data_reader, val_data_reader, test_data_reader) # get the probalistic output of the model. z = model.model(input_var) pred = ct.softmax(z) epoch_size = train_data_reader.size() minibatch_size = 32 # Training config lr_per_minibatch = [model.learning_rate]*20 + [model.learning_rate / 2.0]*20 + [model.learning_rate / 10.0] mm_time_constant = -minibatch_size/np.log(0.9) lr_schedule = learning_rate_schedule(lr_per_minibatch, unit=UnitType.minibatch, epoch_size=epoch_size) mm_schedule = momentum_as_time_constant_schedule(mm_time_constant) # loss and error cost train_loss = cost_func(training_mode, pred, label_var) pe = classification_error(z, label_var) # construct the trainer learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule) trainer = Trainer(z, (train_loss, pe), learner) # Get minibatches of images to train with and perform model training max_val_accuracy = 0.0 final_test_accuracy = 0.0 best_test_accuracy = 0.0 logging.info("Start training...") epoch = 0 best_epoch = 0 while epoch < max_epochs: train_data_reader.reset() val_data_reader.reset() test_data_reader.reset() # Training start_time = time.time() training_loss = 0 training_accuracy = 0 while train_data_reader.has_more(): images, labels, current_batch_size = train_data_reader.next_minibatch(minibatch_size) # Specify the mapping of input variables in the model to actual minibatch data to be trained with trainer.train_minibatch({input_var : images, label_var : labels}) # keep track of statistics. training_loss += trainer.previous_minibatch_loss_average * current_batch_size training_accuracy += trainer.previous_minibatch_evaluation_average * current_batch_size training_accuracy /= train_data_reader.size() training_accuracy = 1.0 - training_accuracy # Validation val_accuracy = 0 while val_data_reader.has_more(): images, labels, current_batch_size = val_data_reader.next_minibatch(minibatch_size) val_accuracy += trainer.test_minibatch({input_var : images, label_var : labels}) * current_batch_size val_accuracy /= val_data_reader.size() val_accuracy = 1.0 - val_accuracy # if validation accuracy goes higher, we compute test accuracy test_run = False if val_accuracy > max_val_accuracy: best_epoch = epoch max_val_accuracy = val_accuracy trainer.save_checkpoint(os.path.join(output_model_folder, "model_{}".format(best_epoch))) test_run = True test_accuracy = 0 while test_data_reader.has_more(): images, labels, current_batch_size = test_data_reader.next_minibatch(minibatch_size) test_accuracy += trainer.test_minibatch({input_var : images, label_var : labels}) * current_batch_size test_accuracy /= test_data_reader.size() test_accuracy = 1.0 - test_accuracy final_test_accuracy = test_accuracy if final_test_accuracy > best_test_accuracy: best_test_accuracy = final_test_accuracy logging.info("Epoch {}: took {:.3f}s".format(epoch, time.time() - start_time)) logging.info(" training loss:\t{:e}".format(training_loss)) logging.info(" training accuracy:\t\t{:.2f} %".format(training_accuracy * 100)) logging.info(" validation accuracy:\t\t{:.2f} %".format(val_accuracy * 100)) if test_run: logging.info(" test accuracy:\t\t{:.2f} %".format(test_accuracy * 100)) epoch += 1 logging.info("") logging.info("Best validation accuracy:\t\t{:.2f} %, epoch {}".format(max_val_accuracy * 100, best_epoch)) logging.info("Test accuracy corresponding to best validation:\t\t{:.2f} %".format(final_test_accuracy * 100)) logging.info("Best test accuracy:\t\t{:.2f} %".format(best_test_accuracy * 100))
def cifar_resnet_distributed(data_path, run_test, num_epochs, communicator=None, save_model_filename=None, load_model_filename=None, debug_output=False): image_height = 32 image_width = 32 num_channels = 3 num_classes = 10 feats_stream_name = 'features' labels_stream_name = 'labels' minibatch_source = create_reader(os.path.join(data_path, 'train_map.txt'), os.path.join(data_path, 'CIFAR-10_mean.xml'), True, distributed_communicator=communicator) features_si = minibatch_source[feats_stream_name] labels_si = minibatch_source[labels_stream_name] # Instantiate the resnet classification model, or load from file if load_model_filename: print("Loading model:", load_model_filename) classifier_output = persist.load_model(load_model_filename) image_input = classifier_output.arguments[0] else: image_input = input_variable((num_channels, image_height, image_width), features_si.m_element_type) classifier_output = create_resnet_model(image_input, num_classes) # Input variables denoting the features and label data label_var = input_variable((num_classes), features_si.m_element_type) ce = cross_entropy_with_softmax(classifier_output, label_var) pe = classification_error(classifier_output, label_var) # Instantiate the trainer object to drive the model training mb_size = 128 num_mb_per_epoch = 100 num_mbs = num_mb_per_epoch * num_epochs lr_schedule = [1.0 / mb_size] * 80 + [0.1 / mb_size] * 40 + [ 0.01 / mb_size ] lr_per_minibatch = learning_rate_schedule(lr_schedule, UnitType.minibatch, mb_size * num_mb_per_epoch) momentum_time_constant = momentum_as_time_constant_schedule(-mb_size / np.log(0.9)) # create data parallel distributed trainer if needed dist_trainer = distributed.data_parallel_distributed_trainer( communicator, False) if communicator else None # Instantiate the trainer object to drive the model training trainer = Trainer(classifier_output, ce, pe, [ momentum_sgd(classifier_output.parameters, lr=lr_per_minibatch, momentum=momentum_time_constant, l2_regularization_weight=0.0001) ], distributed_trainer=dist_trainer) # Get minibatches of images to train with and perform model training training_progress_output_freq = 100 if communicator else 20 if debug_output: training_progress_output_freq = training_progress_output_freq / 4 for i in range(0, num_mbs): # NOTE: depends on network, the mb_size can be changed dynamically here mb = minibatch_source.next_minibatch(mb_size) # Specify the mapping of input variables in the model to actual # minibatch data to be trained with arguments = {image_input: mb[features_si], label_var: mb[labels_si]} trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) if save_model_filename: print("Saving model:", save_model_filename) persist.save_model(classifier_output, save_model_filename) if run_test: test_minibatch_source = create_reader( os.path.join(data_path, 'test_map.txt'), os.path.join(data_path, 'CIFAR-10_mean.xml'), False) features_si = test_minibatch_source[feats_stream_name] labels_si = test_minibatch_source[labels_stream_name] mb_size = 128 num_mbs = 100 total_error = 0.0 for i in range(0, num_mbs): mb = test_minibatch_source.next_minibatch(mb_size) # Specify the mapping of input variables in the model to actual # minibatch data to be trained with arguments = { image_input: mb[features_si], label_var: mb[labels_si] } error = trainer.test_minibatch(arguments) total_error += error return total_error / num_mbs else: return 0
def convnet_cifar10_dataaug(reader_train, reader_test, distributed_trainer, max_epochs=80): set_computation_network_trace_level(0) # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width)) label_var = input_variable((num_classes)) # apply model to input scaled_input = element_times(constant(0.00390625), input_var) with default_options(activation=relu, pad=True): z = Sequential([ LayerStack( 2, lambda: [ Convolution((3, 3), 64), Convolution((3, 3), 64), MaxPooling((3, 3), (2, 2)) ]), LayerStack(2, lambda i: [Dense([256, 128][i]), Dropout(0.5)]), Dense(num_classes, activation=None) ])(scaled_input) # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) # training config epoch_size = 50000 # for now we manually specify epoch size minibatch_size = 64 # Set learning parameters lr_per_sample = [0.0015625] * 20 + [0.00046875] * 20 + [ 0.00015625 ] * 20 + [0.000046875] * 10 + [0.000015625] lr_schedule = learning_rate_schedule(lr_per_sample, unit=UnitType.sample, epoch_size=epoch_size) momentum_time_constant = [0] * 20 + [600] * 20 + [1200] mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant, epoch_size=epoch_size) l2_reg_weight = 0.002 # trainer object learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule, l2_regularization_weight=l2_reg_weight) trainer = Trainer(z, ce, pe, learner, distributed_trainer) # define mapping from reader streams to network inputs input_map = { input_var: reader_train.streams.features, label_var: reader_train.streams.labels } log_number_of_parameters(z) print() progress_printer = ProgressPrinter(tag='Training') # perform model training for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = reader_train.next_minibatch( min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch. trainer.train_minibatch(data) # update model with it sample_count += trainer.previous_minibatch_sample_count # count samples processed so far progress_printer.update_with_trainer( trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) if distributed_trainer.communicator().current_worker( ).global_rank == 0: persist.save_model( z, os.path.join(model_path, "ConvNet_CIFAR10_DataAug_{}.dnn".format(epoch))) ### Evaluation action epoch_size = 10000 minibatch_size = 16 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 while sample_count < epoch_size: current_minibatch = min(minibatch_size, epoch_size - sample_count) # Fetch next test min batch. data = reader_test.next_minibatch(current_minibatch, input_map=input_map) # minibatch data to be trained with metric_numer += trainer.test_minibatch(data) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. sample_count += trainer.previous_minibatch_sample_count minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format( minibatch_index + 1, (metric_numer * 100.0) / metric_denom, metric_denom)) print("") return metric_numer / metric_denom
def sequence_to_sequence_translator(debug_output=False): input_vocab_dim = 69 label_vocab_dim = 69 hidden_dim = 512 num_layers = 2 # Source and target inputs to the model batch_axis = Axis.default_batch_axis() input_seq_axis = Axis("inputAxis") label_seq_axis = Axis("labelAxis") input_dynamic_axes = [batch_axis, input_seq_axis] raw_input = input_variable(shape=(input_vocab_dim), dynamic_axes=input_dynamic_axes) label_dynamic_axes = [batch_axis, label_seq_axis] raw_labels = input_variable(shape=(label_vocab_dim), dynamic_axes=label_dynamic_axes) # Instantiate the sequence to sequence translation model input_sequence = raw_input # Drop the sentence start token from the label, for decoder training label_sequence = slice(raw_labels, label_seq_axis, 1, 0) label_sentence_start = sequence.first(raw_labels) is_first_label = sequence.is_first(label_sequence) label_sentence_start_scattered = sequence.scatter(label_sentence_start, is_first_label) # Encoder encoder_outputH = stabilize(input_sequence) for i in range(0, num_layers): (encoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( encoder_outputH.output(), hidden_dim, hidden_dim, future_value, future_value ) thought_vectorH = sequence.first(encoder_outputH) thought_vectorC = sequence.first(encoder_outputC) thought_vector_broadcastH = sequence.broadcast_as(thought_vectorH, label_sequence) thought_vector_broadcastC = sequence.broadcast_as(thought_vectorC, label_sequence) # Decoder decoder_history_from_ground_truth = label_sequence decoder_input = element_select( is_first_label, label_sentence_start_scattered, past_value(decoder_history_from_ground_truth) ) decoder_outputH = stabilize(decoder_input) for i in range(0, num_layers): if i > 0: recurrence_hookH = past_value recurrence_hookC = past_value else: isFirst = sequence.is_first(label_sequence) recurrence_hookH = lambda operand: element_select(isFirst, thought_vector_broadcastH, past_value(operand)) recurrence_hookC = lambda operand: element_select(isFirst, thought_vector_broadcastC, past_value(operand)) (decoder_outputH, encoder_outputC) = LSTMP_component_with_self_stabilization( decoder_outputH.output(), hidden_dim, hidden_dim, recurrence_hookH, recurrence_hookC ) decoder_output = decoder_outputH decoder_dim = hidden_dim # Softmax output layer z = linear_layer(stabilize(decoder_output), label_vocab_dim) ce = cross_entropy_with_softmax(z, label_sequence) errs = classification_error(z, label_sequence) # Instantiate the trainer object to drive the model training lr = 0.007 momentum_time_constant = 1100 momentum_per_sample = momentums_per_sample(math.exp(-1.0 / momentum_time_constant)) clipping_threshold_per_sample = 2.3 gradient_clipping_with_truncation = True trainer = Trainer( z, ce, errs, [ momentum_sgd( z.parameters(), lr, momentum_per_sample, clipping_threshold_per_sample, gradient_clipping_with_truncation, ) ], ) rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.train-dev-20-21.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) feature_stream_name = "features" labels_stream_name = "labels" mb_source = text_format_minibatch_source( path, [ StreamConfiguration(feature_stream_name, input_vocab_dim, True, "S0"), StreamConfiguration(labels_stream_name, label_vocab_dim, True, "S1"), ], 10000, ) features_si = mb_source[feature_stream_name] labels_si = mb_source[labels_stream_name] # Get minibatches of sequences to train with and perform model training minibatch_size = 72 training_progress_output_freq = 30 if debug_output: training_progress_output_freq = training_progress_output_freq / 3 while True: mb = mb_source.get_next_minibatch(minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual # minibatch data to be trained with arguments = {raw_input: mb[features_si], raw_labels: mb[labels_si]} trainer.train_minibatch(arguments) print_training_progress(trainer, i, training_progress_output_freq) i += 1 rel_path = r"../../../../Examples/SequenceToSequence/CMUDict/Data/cmudict-0.7b.test.ctf" path = os.path.join(os.path.dirname(os.path.abspath(__file__)), rel_path) test_mb_source = text_format_minibatch_source( path, [ StreamConfiguration(feature_stream_name, input_vocab_dim, True, "S0"), StreamConfiguration(labels_stream_name, label_vocab_dim, True, "S1"), ], 10000, False, ) features_si = test_mb_source[feature_stream_name] labels_si = test_mb_source[labels_stream_name] # choose this to be big enough for the longest sentence train_minibatch_size = 1024 # Get minibatches of sequences to test and perform testing i = 0 total_error = 0.0 while True: mb = test_mb_source.get_next_minibatch(train_minibatch_size) if len(mb) == 0: break # Specify the mapping of input variables in the model to actual # minibatch data to be tested with arguments = {raw_input: mb[features_si], raw_labels: mb[labels_si]} mb_error = trainer.test_minibatch(arguments) total_error += mb_error if debug_output: print("Minibatch {}, Error {} ".format(i, mb_error)) i += 1 # Average of evaluation errors of all test minibatches return total_error / i
def convnet_mnist(debug_output=False): image_height = 28 image_width = 28 num_channels = 1 input_dim = image_height * image_width * num_channels num_output_classes = 10 # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width), np.float32) label_var = input_variable(num_output_classes, np.float32) # Instantiate the feedforward classification model scaled_input = element_times(constant(0.00390625), input_var) with default_options(activation=relu, pad=False): conv1 = Convolution((5, 5), 32, pad=True)(scaled_input) pool1 = MaxPooling((3, 3), (2, 2))(conv1) conv2 = Convolution((3, 3), 48)(pool1) pool2 = MaxPooling((3, 3), (2, 2))(conv2) conv3 = Convolution((3, 3), 64)(pool2) f4 = Dense(96)(conv3) drop4 = Dropout(0.5)(f4) z = Dense(num_output_classes, activation=None)(drop4) ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) reader_train = create_reader( os.path.join(data_path, 'Train-28x28_cntk_text.txt'), True, input_dim, num_output_classes) # training config epoch_size = 60000 # for now we manually specify epoch size minibatch_size = 128 # Set learning parameters lr_per_sample = [0.001] * 10 + [0.0005] * 10 + [0.0001] lr_schedule = learning_rate_schedule(lr_per_sample, UnitType.sample, epoch_size) mm_time_constant = [0] * 5 + [1024] mm_schedule = momentum_as_time_constant_schedule(mm_time_constant, epoch_size) # Instantiate the trainer object to drive the model training learner = momentum_sgd(z.parameters, lr_schedule, mm_schedule) trainer = Trainer(z, ce, pe, learner) # define mapping from reader streams to network inputs input_map = { input_var: reader_train.streams.features, label_var: reader_train.streams.labels } log_number_of_parameters(z) print() progress_printer = ProgressPrinter(tag='Training') # Get minibatches of images to train with and perform model training max_epochs = 40 for epoch in range(max_epochs): # loop over epochs sample_count = 0 while sample_count < epoch_size: # loop over minibatches in the epoch data = reader_train.next_minibatch( min(minibatch_size, epoch_size - sample_count), input_map=input_map) # fetch minibatch. trainer.train_minibatch(data) # update model with it sample_count += data[ label_var].num_samples # count samples processed so far progress_printer.update_with_trainer( trainer, with_metric=True) # log progress progress_printer.epoch_summary(with_metric=True) z.save_model( os.path.join(model_path, "ConvNet_MNIST_{}.dnn".format(epoch))) # Load test data reader_test = create_reader( os.path.join(data_path, 'Test-28x28_cntk_text.txt'), False, input_dim, num_output_classes) input_map = { input_var: reader_test.streams.features, label_var: reader_test.streams.labels } # Test data for trained model epoch_size = 10000 minibatch_size = 1024 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 while sample_count < epoch_size: current_minibatch = min(minibatch_size, epoch_size - sample_count) # Fetch next test min batch. data = reader_test.next_minibatch(current_minibatch, input_map=input_map) # minibatch data to be trained with metric_numer += trainer.test_minibatch(data) * current_minibatch metric_denom += current_minibatch # Keep track of the number of samples processed so far. sample_count += trainer.previous_minibatch_sample_count minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format( minibatch_index + 1, (metric_numer * 100.0) / metric_denom, metric_denom)) print("") return metric_numer / metric_denom
def train_and_evaluate(create_train_reader, test_reader, network_name, max_epochs, create_dist_learner, scale_up=False): set_computation_network_trace_level(0) # Input variables denoting the features and label data input_var = input_variable((num_channels, image_height, image_width)) label_var = input_variable((num_classes)) # create model, and configure learning parameters if network_name == 'resnet20': z = create_cifar10_model(input_var, 3, num_classes) lr_per_mb = [1.0] * 80 + [0.1] * 40 + [0.01] elif network_name == 'resnet110': z = create_cifar10_model(input_var, 18, num_classes) lr_per_mb = [0.1] * 1 + [1.0] * 80 + [0.1] * 40 + [0.01] else: return RuntimeError("Unknown model name!") # loss and metric ce = cross_entropy_with_softmax(z, label_var) pe = classification_error(z, label_var) # shared training parameters epoch_size = 50000 # for now we manually specify epoch size # NOTE: scaling up minibatch_size increases sample throughput. In 8-GPU machine, # ResNet110 samples-per-second is ~7x of single GPU, comparing to ~3x without scaling # up. However, bigger minimatch size on the same number of samples means less updates, # thus leads to higher training error. This is a trade-off of speed and accuracy minibatch_size = 128 * (distributed.Communicator.num_workers() if scale_up else 1) momentum_time_constant = -minibatch_size / np.log(0.9) l2_reg_weight = 0.0001 # Set learning parameters lr_per_sample = [lr / minibatch_size for lr in lr_per_mb] lr_schedule = learning_rate_schedule(lr_per_sample, epoch_size=epoch_size, unit=UnitType.sample) mm_schedule = momentum_as_time_constant_schedule(momentum_time_constant) # trainer object learner = create_dist_learner( momentum_sgd(z.parameters, lr_schedule, mm_schedule, unit_gain=True, l2_regularization_weight=l2_reg_weight)) trainer = Trainer(z, ce, pe, learner) total_number_of_samples = max_epochs * epoch_size train_reader = create_train_reader(total_number_of_samples) # define mapping from reader streams to network inputs input_map = { input_var: train_reader.streams.features, label_var: train_reader.streams.labels } log_number_of_parameters(z) print() progress_printer = ProgressPrinter(tag='Training') # perform model training current_epoch = 0 updated = True while updated: data = train_reader.next_minibatch( minibatch_size, input_map=input_map) # fetch minibatch. updated = trainer.train_minibatch(data) # update model with it progress_printer.update_with_trainer(trainer, with_metric=True) # log progress epoch_index = int(trainer.total_number_of_samples_seen / epoch_size) if current_epoch != epoch_index: # new epoch reached progress_printer.epoch_summary(with_metric=True) current_epoch = epoch_index trainer.save_checkpoint( os.path.join(model_path, network_name + "_{}.dnn".format(current_epoch))) # Evaluation parameters epoch_size = 10000 minibatch_size = 16 # process minibatches and evaluate the model metric_numer = 0 metric_denom = 0 sample_count = 0 minibatch_index = 0 while True: data = test_reader.next_minibatch(minibatch_size, input_map=input_map) if not data: break local_mb_samples = data[label_var].num_samples metric_numer += trainer.test_minibatch(data) * local_mb_samples metric_denom += local_mb_samples minibatch_index += 1 print("") print("Final Results: Minibatch[1-{}]: errs = {:0.2f}% * {}".format( minibatch_index + 1, (metric_numer * 100.0) / metric_denom, metric_denom)) print("") return metric_numer / metric_denom