def create_shoreline_buffer(im_shape, georef, image_epsg, pixel_size, settings): """ Creates a buffer around the reference shoreline. The size of the buffer is given by settings['max_dist_ref']. KV WRL 2018 Arguments: ----------- im_shape: np.array size of the image (rows,columns) georef: np.array vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] image_epsg: int spatial reference system of the image from which the contours were extracted pixel_size: int size of the pixel in metres (15 for Landsat, 10 for Sentinel-2) settings: dict with the following keys 'output_epsg': int output spatial reference system 'reference_shoreline': np.array coordinates of the reference shoreline 'max_dist_ref': int maximum distance from the reference shoreline in metres Returns: ----------- im_buffer: np.array binary image, True where the buffer is, False otherwise """ # initialise the image buffer im_buffer = np.ones(im_shape).astype(bool) if 'reference_shoreline' in settings.keys(): # convert reference shoreline to pixel coordinates ref_sl = settings['reference_shoreline'] ref_sl_conv = SDS_tools.convert_epsg(ref_sl, settings['output_epsg'],image_epsg)[:,:-1] ref_sl_pix = SDS_tools.convert_world2pix(ref_sl_conv, georef) ref_sl_pix_rounded = np.round(ref_sl_pix).astype(int) # make sure that the pixel coordinates of the reference shoreline are inside the image idx_row = np.logical_and(ref_sl_pix_rounded[:,0] > 0, ref_sl_pix_rounded[:,0] < im_shape[1]) idx_col = np.logical_and(ref_sl_pix_rounded[:,1] > 0, ref_sl_pix_rounded[:,1] < im_shape[0]) idx_inside = np.logical_and(idx_row, idx_col) ref_sl_pix_rounded = ref_sl_pix_rounded[idx_inside,:] # create binary image of the reference shoreline (1 where the shoreline is 0 otherwise) im_binary = np.zeros(im_shape) for j in range(len(ref_sl_pix_rounded)): im_binary[ref_sl_pix_rounded[j,1], ref_sl_pix_rounded[j,0]] = 1 im_binary = im_binary.astype(bool) # dilate the binary image to create a buffer around the reference shoreline max_dist_ref_pixels = np.ceil(settings['max_dist_ref']/pixel_size) se = morphology.disk(max_dist_ref_pixels) im_buffer = morphology.binary_dilation(im_binary, se) return im_buffer
def process_shoreline(contours, georef, image_epsg, settings): """ Converts the contours from image coordinates to world coordinates. This function also removes the contours that are too small to be a shoreline (based on the parameter settings['min_length_sl']) KV WRL 2018 Arguments: ----------- contours: np.array or list of np.array image contours as detected by the function find_contours georef: np.array vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] image_epsg: int spatial reference system of the image from which the contours were extracted settings: dict contains the following fields: output_epsg: int output spatial reference system min_length_sl: float minimum length of shoreline perimeter to be kept (in meters) Returns: ----------- shoreline: np.array array of points with the X and Y coordinates of the shoreline """ # convert pixel coordinates to world coordinates contours_world = SDS_tools.convert_pix2world(contours, georef) # convert world coordinates to desired spatial reference system contours_epsg = SDS_tools.convert_epsg(contours_world, image_epsg, settings['output_epsg']) # remove contours that have a perimeter < min_length_sl (provided in settings dict) # this enables to remove the very small contours that do not correspond to the shoreline contours_long = [] for l, wl in enumerate(contours_epsg): coords = [(wl[k, 0], wl[k, 1]) for k in range(len(wl))] a = LineString(coords) # shapely LineString structure if a.length >= settings['min_length_sl']: contours_long.append(wl) # format points into np.array x_points = np.array([]) y_points = np.array([]) for k in range(len(contours_long)): x_points = np.append(x_points, contours_long[k][:, 0]) y_points = np.append(y_points, contours_long[k][:, 1]) contours_array = np.transpose(np.array([x_points, y_points])) shoreline = contours_array return shoreline
def show_detection(im_ms, cloud_mask, im_labels, shoreline, image_epsg, georef, settings, date, satname): """ Shows the detected shoreline to the user for visual quality control. The user can select "keep" if the shoreline detection is correct or "skip" if it is incorrect. KV WRL 2018 Arguments: ----------- im_ms: np.array RGB + downsampled NIR and SWIR cloud_mask: np.array 2D cloud mask with True where cloud pixels are im_labels: np.array 3D image containing a boolean image for each class in the order (sand, swash, water) shoreline: np.array array of points with the X and Y coordinates of the shoreline image_epsg: int spatial reference system of the image from which the contours were extracted georef: np.array vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] settings: dict contains the following fields: date: string date at which the image was taken satname: string indicates the satname (L5,L7,L8 or S2) Returns: ----------- skip_image: boolean True if the user wants to skip the image, False otherwise. """ sitename = settings['inputs']['sitename'] filepath_data = settings['inputs']['filepath'] # subfolder where the .jpg file is stored if the user accepts the shoreline detection filepath = os.path.join(filepath_data, sitename, 'jpg_files', 'detection') im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:, :, [2, 1, 0]], cloud_mask, 99.9) # compute classified image im_class = np.copy(im_RGB) cmap = cm.get_cmap('tab20c') colorpalette = cmap(np.arange(0, 13, 1)) colours = np.zeros((3, 4)) colours[0, :] = colorpalette[5] colours[1, :] = np.array([204 / 255, 1, 1, 1]) colours[2, :] = np.array([0, 91 / 255, 1, 1]) for k in range(0, im_labels.shape[2]): im_class[im_labels[:, :, k], 0] = colours[k, 0] im_class[im_labels[:, :, k], 1] = colours[k, 1] im_class[im_labels[:, :, k], 2] = colours[k, 2] # compute MNDWI grayscale image im_mwi = SDS_tools.nd_index(im_ms[:, :, 4], im_ms[:, :, 1], cloud_mask) # transform world coordinates of shoreline into pixel coordinates # use try/except in case there are no coordinates to be transformed (shoreline = []) try: sl_pix = SDS_tools.convert_world2pix( SDS_tools.convert_epsg(shoreline, settings['output_epsg'], image_epsg)[:, [0, 1]], georef) except: # if try fails, just add nan into the shoreline vector so the next parts can still run sl_pix = np.array([[np.nan, np.nan], [np.nan, np.nan]]) if plt.get_fignums(): # get open figure if it exists fig = plt.gcf() ax1 = fig.axes[0] ax2 = fig.axes[1] ax3 = fig.axes[2] else: # else create a new figure fig = plt.figure() fig.set_size_inches([12.53, 9.3]) mng = plt.get_current_fig_manager() mng.window.showMaximized() # according to the image shape, decide whether it is better to have the images # in vertical subplots or horizontal subplots if im_RGB.shape[1] > 2 * im_RGB.shape[0]: # vertical subplots gs = gridspec.GridSpec(3, 1) gs.update(bottom=0.03, top=0.97, left=0.03, right=0.97) ax1 = fig.add_subplot(gs[0, 0]) ax2 = fig.add_subplot(gs[1, 0]) ax3 = fig.add_subplot(gs[2, 0]) else: # horizontal subplots gs = gridspec.GridSpec(1, 3) gs.update(bottom=0.05, top=0.95, left=0.05, right=0.95) ax1 = fig.add_subplot(gs[0, 0]) ax2 = fig.add_subplot(gs[0, 1]) ax3 = fig.add_subplot(gs[0, 2]) # change the color of nans to either black (0.0) or white (1.0) or somewhere in between nan_color = 1.0 im_RGB = np.where(np.isnan(im_RGB), nan_color, im_RGB) im_class = np.where(np.isnan(im_class), 1.0, im_class) # create image 1 (RGB) ax1.imshow(im_RGB) ax1.plot(sl_pix[:, 0], sl_pix[:, 1], 'k.', markersize=3) ax1.axis('off') ax1.set_title(sitename, fontweight='bold', fontsize=16) # create image 2 (classification) ax2.imshow(im_class) ax2.plot(sl_pix[:, 0], sl_pix[:, 1], 'k.', markersize=3) ax2.axis('off') orange_patch = mpatches.Patch(color=colours[0, :], label='sand') white_patch = mpatches.Patch(color=colours[1, :], label='whitewater') blue_patch = mpatches.Patch(color=colours[2, :], label='water') black_line = mlines.Line2D([], [], color='k', linestyle='-', label='shoreline') ax2.legend(handles=[orange_patch, white_patch, blue_patch, black_line], bbox_to_anchor=(1, 0.5), fontsize=10) ax2.set_title(date, fontweight='bold', fontsize=16) # create image 3 (MNDWI) ax3.imshow(im_mwi, cmap='bwr') ax3.plot(sl_pix[:, 0], sl_pix[:, 1], 'k.', markersize=3) ax3.axis('off') ax3.set_title(satname, fontweight='bold', fontsize=16) # additional options # ax1.set_anchor('W') # ax2.set_anchor('W') # cb = plt.colorbar() # cb.ax.tick_params(labelsize=10) # cb.set_label('MNDWI values') # ax3.set_anchor('W') # if check_detection is True, let user manually accept/reject the images skip_image = False if settings['check_detection']: # set a key event to accept/reject the detections (see https://stackoverflow.com/a/15033071) # this variable needs to be immuatable so we can access it after the keypress event key_event = {} def press(event): # store what key was pressed in the dictionary key_event['pressed'] = event.key # let the user press a key, right arrow to keep the image, left arrow to skip it # to break the loop the user can press 'escape' while True: btn_keep = plt.text(1.1, 0.9, 'keep ⇨', size=12, ha="right", va="top", transform=ax1.transAxes, bbox=dict(boxstyle="square", ec='k', fc='w')) btn_skip = plt.text(-0.1, 0.9, '⇦ skip', size=12, ha="left", va="top", transform=ax1.transAxes, bbox=dict(boxstyle="square", ec='k', fc='w')) btn_esc = plt.text(0.5, 0, '<esc> to quit', size=12, ha="center", va="top", transform=ax1.transAxes, bbox=dict(boxstyle="square", ec='k', fc='w')) plt.draw() fig.canvas.mpl_connect('key_press_event', press) plt.waitforbuttonpress() # after button is pressed, remove the buttons btn_skip.remove() btn_keep.remove() btn_esc.remove() # keep/skip image according to the pressed key, 'escape' to break the loop if key_event.get('pressed') == 'right': skip_image = False break elif key_event.get('pressed') == 'left': skip_image = True break elif key_event.get('pressed') == 'escape': plt.close() raise StopIteration( 'User cancelled checking shoreline detection') else: plt.waitforbuttonpress() # if save_figure is True, save a .jpg under /jpg_files/detection if settings['save_figure'] and not skip_image: fig.savefig(os.path.join(filepath, date + '_' + satname + '.jpg'), dpi=200) # Don't close the figure window, but remove all axes and settings, ready for next plot for ax in fig.axes: ax.clear() return skip_image
def evaluate_classifier(classifier, metadata, settings): """ Apply the image classifier to all the images and save the classified images. KV WRL 2019 Arguments: ----------- classifier: joblib object classifier model to be used for image classification metadata: dict contains all the information about the satellite images that were downloaded settings: dict with the following keys 'inputs': dict input parameters (sitename, filepath, polygon, dates, sat_list) 'cloud_thresh': float value between 0 and 1 indicating the maximum cloud fraction in the cropped image that is accepted 'cloud_mask_issue': boolean True if there is an issue with the cloud mask and sand pixels are erroneously being masked on the images 'output_epsg': int output spatial reference system as EPSG code 'buffer_size': int size of the buffer (m) around the sandy pixels over which the pixels are considered in the thresholding algorithm 'min_beach_area': int minimum allowable object area (in metres^2) for the class 'sand', the area is converted to number of connected pixels 'min_length_sl': int minimum length (in metres) of shoreline contour to be valid Returns: ----------- Saves .jpg images with the output of the classification in the folder ./detection """ # create folder called evaluation fp = os.path.join(os.getcwd(), 'evaluation') if not os.path.exists(fp): os.makedirs(fp) # initialize figure (not interactive) plt.ioff() fig,ax = plt.subplots(1,2,figsize=[17,10],sharex=True, sharey=True, constrained_layout=True) # create colormap for labels cmap = cm.get_cmap('tab20c') colorpalette = cmap(np.arange(0,13,1)) colours = np.zeros((3,4)) colours[0,:] = colorpalette[5] colours[1,:] = np.array([204/255,1,1,1]) colours[2,:] = np.array([0,91/255,1,1]) # loop through satellites for satname in metadata.keys(): filepath = SDS_tools.get_filepath(settings['inputs'],satname) filenames = metadata[satname]['filenames'] # load classifiers and if satname in ['L5','L7','L8']: pixel_size = 15 elif satname == 'S2': pixel_size = 10 # convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels buffer_size_pixels = np.ceil(settings['buffer_size']/pixel_size) min_beach_area_pixels = np.ceil(settings['min_beach_area']/pixel_size**2) # loop through images for i in range(len(filenames)): # image filename fn = SDS_tools.get_filenames(filenames[i],filepath, satname) # read and preprocess image im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single(fn, satname, settings['cloud_mask_issue']) image_epsg = metadata[satname]['epsg'][i] # compute cloud_cover percentage (with no data pixels) cloud_cover_combined = np.divide(sum(sum(cloud_mask.astype(int))), (cloud_mask.shape[0]*cloud_mask.shape[1])) if cloud_cover_combined > 0.99: # if 99% of cloudy pixels in image skip continue # remove no data pixels from the cloud mask (for example L7 bands of no data should not be accounted for) cloud_mask_adv = np.logical_xor(cloud_mask, im_nodata) # compute updated cloud cover percentage (without no data pixels) cloud_cover = np.divide(sum(sum(cloud_mask_adv.astype(int))), (sum(sum((~im_nodata).astype(int))))) # skip image if cloud cover is above threshold if cloud_cover > settings['cloud_thresh']: continue # calculate a buffer around the reference shoreline (if any has been digitised) im_ref_buffer = SDS_shoreline.create_shoreline_buffer(cloud_mask.shape, georef, image_epsg, pixel_size, settings) # classify image in 4 classes (sand, whitewater, water, other) with NN classifier im_classif, im_labels = SDS_shoreline.classify_image_NN(im_ms, im_extra, cloud_mask, min_beach_area_pixels, classifier) # there are two options to map the contours: # if there are pixels in the 'sand' class --> use find_wl_contours2 (enhanced) # otherwise use find_wl_contours2 (traditional) try: # use try/except structure for long runs if sum(sum(im_labels[:,:,0])) < 10 : # compute MNDWI image (SWIR-G) im_mndwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask) # find water contours on MNDWI grayscale image contours_mwi, t_mndwi = SDS_shoreline.find_wl_contours1(im_mndwi, cloud_mask, im_ref_buffer) else: # use classification to refine threshold and extract the sand/water interface contours_mwi, t_mndwi = SDS_shoreline.find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size_pixels, im_ref_buffer) except: print('Could not map shoreline for this image: ' + filenames[i]) continue # process the water contours into a shoreline shoreline = SDS_shoreline.process_shoreline(contours_mwi, cloud_mask, georef, image_epsg, settings) try: sl_pix = SDS_tools.convert_world2pix(SDS_tools.convert_epsg(shoreline, settings['output_epsg'], image_epsg)[:,[0,1]], georef) except: # if try fails, just add nan into the shoreline vector so the next parts can still run sl_pix = np.array([[np.nan, np.nan],[np.nan, np.nan]]) # make a plot im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9) # create classified image im_class = np.copy(im_RGB) for k in range(0,im_labels.shape[2]): im_class[im_labels[:,:,k],0] = colours[k,0] im_class[im_labels[:,:,k],1] = colours[k,1] im_class[im_labels[:,:,k],2] = colours[k,2] # show images ax[0].imshow(im_RGB) ax[1].imshow(im_RGB) ax[1].imshow(im_class, alpha=0.5) ax[0].axis('off') ax[1].axis('off') filename = filenames[i][:filenames[i].find('.')][:-4] ax[0].set_title(filename) ax[0].plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3) ax[1].plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3) # save figure fig.savefig(os.path.join(fp,settings['inputs']['sitename'] + filename[:19] +'.jpg'), dpi=150) # clear axes for cax in fig.axes: cax.clear() # close the figure at the end plt.close()
def get_reference_sl(metadata, settings): """ Allows the user to manually digitize a reference shoreline that is used seed the shoreline detection algorithm. The reference shoreline helps to detect the outliers, making the shoreline detection more robust. KV WRL 2018 Arguments: ----------- metadata: dict contains all the information about the satellite images that were downloaded settings: dict with the following keys 'inputs': dict input parameters (sitename, filepath, polygon, dates, sat_list) 'cloud_thresh': float value between 0 and 1 indicating the maximum cloud fraction in the cropped image that is accepted 'cloud_mask_issue': boolean True if there is an issue with the cloud mask and sand pixels are erroneously being masked on the images 'output_epsg': int output spatial reference system as EPSG code Returns: ----------- reference_shoreline: np.array coordinates of the reference shoreline that was manually digitized. This is also saved as a .pkl and .geojson file. """ sitename = settings['inputs']['sitename'] filepath_data = settings['inputs']['filepath'] pts_coords = [] # check if reference shoreline already exists in the corresponding folder filepath = os.path.join(filepath_data, sitename) filename = sitename + '_reference_shoreline.pkl' # if it exist, load it and return it if filename in os.listdir(filepath): print('Reference shoreline already exists and was loaded') with open(os.path.join(filepath, sitename + '_reference_shoreline.pkl'), 'rb') as f: refsl = pickle.load(f) return refsl # otherwise get the user to manually digitise a shoreline on S2, L8 or L5 images (no L7 because of scan line error) else: # first try to use S2 images (10m res for manually digitizing the reference shoreline) if 'S2' in metadata.keys(): satname = 'S2' filepath = SDS_tools.get_filepath(settings['inputs'],satname) filenames = metadata[satname]['filenames'] # if no S2 images, try L8 (15m res in the RGB with pansharpening) elif not 'S2' in metadata.keys() and 'L8' in metadata.keys(): satname = 'L8' filepath = SDS_tools.get_filepath(settings['inputs'],satname) filenames = metadata[satname]['filenames'] # if no S2 images and no L8, use L5 images (L7 images have black diagonal bands making it # hard to manually digitize a shoreline) elif not 'S2' in metadata.keys() and not 'L8' in metadata.keys() and 'L5' in metadata.keys(): satname = 'L5' filepath = SDS_tools.get_filepath(settings['inputs'],satname) filenames = metadata[satname]['filenames'] else: raise Exception('You cannot digitize the shoreline on L7 images (because of gaps in the images), add another L8, S2 or L5 to your dataset.') # create figure fig, ax = plt.subplots(1,1, figsize=[18,9], tight_layout=True) mng = plt.get_current_fig_manager() mng.window.showMaximized() # loop trhough the images for i in range(len(filenames)): # read image fn = SDS_tools.get_filenames(filenames[i],filepath, satname) im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = preprocess_single(fn, satname, settings['cloud_mask_issue']) # calculate cloud cover cloud_cover = np.divide(sum(sum(cloud_mask.astype(int))), (cloud_mask.shape[0]*cloud_mask.shape[1])) # skip image if cloud cover is above threshold if cloud_cover > settings['cloud_thresh']: continue # rescale image intensity for display purposes im_RGB = rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9) # plot the image RGB on a figure ax.axis('off') ax.imshow(im_RGB) # decide if the image if good enough for digitizing the shoreline ax.set_title('Press <right arrow> if image is clear enough to digitize the shoreline.\n' + 'If the image is cloudy press <left arrow> to get another image', fontsize=14) # set a key event to accept/reject the detections (see https://stackoverflow.com/a/15033071) # this variable needs to be immuatable so we can access it after the keypress event skip_image = False key_event = {} def press(event): # store what key was pressed in the dictionary key_event['pressed'] = event.key # let the user press a key, right arrow to keep the image, left arrow to skip it # to break the loop the user can press 'escape' while True: btn_keep = plt.text(1.1, 0.9, 'keep ⇨', size=12, ha="right", va="top", transform=ax.transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) btn_skip = plt.text(-0.1, 0.9, '⇦ skip', size=12, ha="left", va="top", transform=ax.transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) btn_esc = plt.text(0.5, 0, '<esc> to quit', size=12, ha="center", va="top", transform=ax.transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) plt.draw() fig.canvas.mpl_connect('key_press_event', press) plt.waitforbuttonpress() # after button is pressed, remove the buttons btn_skip.remove() btn_keep.remove() btn_esc.remove() # keep/skip image according to the pressed key, 'escape' to break the loop if key_event.get('pressed') == 'right': skip_image = False break elif key_event.get('pressed') == 'left': skip_image = True break elif key_event.get('pressed') == 'escape': plt.close() raise StopIteration('User cancelled checking shoreline detection') else: plt.waitforbuttonpress() if skip_image: ax.clear() continue else: # create two new buttons add_button = plt.text(0, 0.9, 'add', size=16, ha="left", va="top", transform=plt.gca().transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) end_button = plt.text(1, 0.9, 'end', size=16, ha="right", va="top", transform=plt.gca().transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) # add multiple reference shorelines (until user clicks on <end> button) pts_sl = np.expand_dims(np.array([np.nan, np.nan]),axis=0) geoms = [] while 1: add_button.set_visible(False) end_button.set_visible(False) # update title (instructions) ax.set_title('Click points along the shoreline (enough points to capture the beach curvature).\n' + 'Start at one end of the beach.\n' + 'When finished digitizing, click <ENTER>', fontsize=14) plt.draw() # let user click on the shoreline pts = ginput(n=50000, timeout=1e9, show_clicks=True) pts_pix = np.array(pts) # convert pixel coordinates to world coordinates pts_world = SDS_tools.convert_pix2world(pts_pix[:,[1,0]], georef) # interpolate between points clicked by the user (1m resolution) pts_world_interp = np.expand_dims(np.array([np.nan, np.nan]),axis=0) for k in range(len(pts_world)-1): pt_dist = np.linalg.norm(pts_world[k,:]-pts_world[k+1,:]) xvals = np.arange(0,pt_dist) yvals = np.zeros(len(xvals)) pt_coords = np.zeros((len(xvals),2)) pt_coords[:,0] = xvals pt_coords[:,1] = yvals phi = 0 deltax = pts_world[k+1,0] - pts_world[k,0] deltay = pts_world[k+1,1] - pts_world[k,1] phi = np.pi/2 - np.math.atan2(deltax, deltay) tf = transform.EuclideanTransform(rotation=phi, translation=pts_world[k,:]) pts_world_interp = np.append(pts_world_interp,tf(pt_coords), axis=0) pts_world_interp = np.delete(pts_world_interp,0,axis=0) # save as geometry (to create .geojson file later) geoms.append(geometry.LineString(pts_world_interp)) # convert to pixel coordinates and plot pts_pix_interp = SDS_tools.convert_world2pix(pts_world_interp, georef) pts_sl = np.append(pts_sl, pts_world_interp, axis=0) ax.plot(pts_pix_interp[:,0], pts_pix_interp[:,1], 'r--') ax.plot(pts_pix_interp[0,0], pts_pix_interp[0,1],'ko') ax.plot(pts_pix_interp[-1,0], pts_pix_interp[-1,1],'ko') # update title and buttons add_button.set_visible(True) end_button.set_visible(True) ax.set_title('click on <add> to digitize another shoreline or on <end> to finish and save the shoreline(s)', fontsize=14) plt.draw() # let the user click again (<add> another shoreline or <end>) pt_input = ginput(n=1, timeout=1e9, show_clicks=False) pt_input = np.array(pt_input) # if user clicks on <end>, save the points and break the loop if pt_input[0][0] > im_ms.shape[1]/2: add_button.set_visible(False) end_button.set_visible(False) plt.title('Reference shoreline saved as ' + sitename + '_reference_shoreline.pkl and ' + sitename + '_reference_shoreline.geojson') plt.draw() ginput(n=1, timeout=3, show_clicks=False) plt.close() break pts_sl = np.delete(pts_sl,0,axis=0) # convert world image coordinates to user-defined coordinate system image_epsg = metadata[satname]['epsg'][i] pts_coords = SDS_tools.convert_epsg(pts_sl, image_epsg, settings['output_epsg']) # save the reference shoreline as .pkl filepath = os.path.join(filepath_data, sitename) with open(os.path.join(filepath, sitename + '_reference_shoreline.pkl'), 'wb') as f: pickle.dump(pts_coords, f) # also store as .geojson in case user wants to drag-and-drop on GIS for verification for k,line in enumerate(geoms): gdf = gpd.GeoDataFrame(geometry=gpd.GeoSeries(line)) gdf.index = [k] gdf.loc[k,'name'] = 'reference shoreline ' + str(k+1) # store into geodataframe if k == 0: gdf_all = gdf else: gdf_all = gdf_all.append(gdf) gdf_all.crs = {'init':'epsg:'+str(image_epsg)} # convert from image_epsg to user-defined coordinate system gdf_all = gdf_all.to_crs({'init': 'epsg:'+str(settings['output_epsg'])}) # save as geojson gdf_all.to_file(os.path.join(filepath, sitename + '_reference_shoreline.geojson'), driver='GeoJSON', encoding='utf-8') print('Reference shoreline has been saved in ' + filepath) break # check if a shoreline was digitised if len(pts_coords) == 0: raise Exception('No cloud free images are available to digitise the reference shoreline,'+ 'download more images and try again') return pts_coords
def process_shoreline(contours, cloud_mask, georef, image_epsg, settings): """ Converts the contours from image coordinates to world coordinates. This function also removes the contours that are too small to be a shoreline (based on the parameter settings['min_length_sl']) KV WRL 2018 Arguments: ----------- contours: np.array or list of np.array image contours as detected by the function find_contours cloud_mask: np.array 2D cloud mask with True where cloud pixels are georef: np.array vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] image_epsg: int spatial reference system of the image from which the contours were extracted settings: dict contains the following fields: output_epsg: int output spatial reference system min_length_sl: float minimum length of shoreline perimeter to be kept (in meters) Returns: ----------- shoreline: np.array array of points with the X and Y coordinates of the shoreline """ # convert pixel coordinates to world coordinates contours_world = SDS_tools.convert_pix2world(contours, georef) # convert world coordinates to desired spatial reference system contours_epsg = SDS_tools.convert_epsg(contours_world, image_epsg, settings['output_epsg']) # remove contours that have a perimeter < min_length_sl (provided in settings dict) # this enables to remove the very small contours that do not correspond to the shoreline contours_long = [] for l, wl in enumerate(contours_epsg): coords = [(wl[k, 0], wl[k, 1]) for k in range(len(wl))] a = LineString(coords) # shapely LineString structure if a.length >= settings['min_length_sl']: contours_long.append(wl) # format points into np.array x_points = np.array([]) y_points = np.array([]) for k in range(len(contours_long)): x_points = np.append(x_points, contours_long[k][:, 0]) y_points = np.append(y_points, contours_long[k][:, 1]) contours_array = np.transpose(np.array([x_points, y_points])) shoreline = contours_array # now remove any shoreline points that are attached to cloud pixels if sum(sum(cloud_mask)) > 0: # get the coordinates of the cloud pixels idx_cloud = np.where(cloud_mask) idx_cloud = np.array([(idx_cloud[0][k], idx_cloud[1][k]) for k in range(len(idx_cloud[0]))]) # convert to world coordinates and same epsg as the shoreline points coords_cloud = SDS_tools.convert_epsg( SDS_tools.convert_pix2world(idx_cloud, georef), image_epsg, settings['output_epsg'])[:, :-1] # only keep the shoreline points that are at least 30m from any cloud pixel idx_keep = np.ones(len(shoreline)).astype(bool) for k in range(len(shoreline)): if np.any( np.linalg.norm(shoreline[k, :] - coords_cloud, axis=1) < 30): idx_keep[k] = False shoreline = shoreline[idx_keep] return shoreline
def get_reference_sl(metadata, settings): """ Allows the user to manually digitize a reference shoreline that is used seed the shoreline detection algorithm. The reference shoreline helps to detect the outliers, making the shoreline detection more robust. KV WRL 2018 Arguments: ----------- metadata: dict contains all the information about the satellite images that were downloaded settings: dict contains the following fields: 'cloud_thresh': float value between 0 and 1 indicating the maximum cloud fraction in the image that is accepted 'sitename': string name of the site (also name of the folder where the images are stored) 'output_epsg': int epsg code of the desired spatial reference system Returns: ----------- reference_shoreline: np.array coordinates of the reference shoreline that was manually digitized """ sitename = settings['inputs']['sitename'] filepath_data = settings['inputs']['filepath'] # check if reference shoreline already exists in the corresponding folder filepath = os.path.join(filepath_data, sitename) filename = sitename + '_reference_shoreline.pkl' if filename in os.listdir(filepath): print('Reference shoreline already exists and was loaded') with open( os.path.join(filepath, sitename + '_reference_shoreline.pkl'), 'rb') as f: refsl = pickle.load(f) return refsl else: # first try to use S2 images (10m res for manually digitizing the reference shoreline) if 'S2' in metadata.keys(): satname = 'S2' filepath = SDS_tools.get_filepath(settings['inputs'], satname) filenames = metadata[satname]['filenames'] # if no S2 images, try L8 (15m res in the RGB with pansharpening) elif not 'S2' in metadata.keys() and 'L8' in metadata.keys(): satname = 'L8' filepath = SDS_tools.get_filepath(settings['inputs'], satname) filenames = metadata[satname]['filenames'] # if no S2 images and no L8, use L5 images (L7 images have black diagonal bands making it # hard to manually digitize a shoreline) elif not 'S2' in metadata.keys() and not 'L8' in metadata.keys( ) and 'L5' in metadata.keys(): satname = 'L5' filepath = SDS_tools.get_filepath(settings['inputs'], satname) filenames = metadata[satname]['filenames'] else: raise Exception( 'You cannot digitize the shoreline on L7 images, add another L8, S2 or L5 to your dataset.' ) # loop trhough the images for i in range(len(filenames)): # read image fn = SDS_tools.get_filenames(filenames[i], filepath, satname) im_ms, georef, cloud_mask, im_extra, imQA = preprocess_single( fn, satname, settings['cloud_mask_issue']) # calculate cloud cover cloud_cover = np.divide( sum(sum(cloud_mask.astype(int))), (cloud_mask.shape[0] * cloud_mask.shape[1])) # skip image if cloud cover is above threshold if cloud_cover > settings['cloud_thresh']: continue # rescale image intensity for display purposes im_RGB = rescale_image_intensity(im_ms[:, :, [2, 1, 0]], cloud_mask, 99.9) # plot the image RGB on a figure fig = plt.figure() fig.set_size_inches([18, 9]) fig.set_tight_layout(True) plt.axis('off') plt.imshow(im_RGB) # decide if the image if good enough for digitizing the shoreline plt.title( 'click <keep> if image is clear enough to digitize the shoreline.\n' + 'If not (too cloudy) click on <skip> to get another image', fontsize=14) keep_button = plt.text(0, 0.9, 'keep', size=16, ha="left", va="top", transform=plt.gca().transAxes, bbox=dict(boxstyle="square", ec='k', fc='w')) skip_button = plt.text(1, 0.9, 'skip', size=16, ha="right", va="top", transform=plt.gca().transAxes, bbox=dict(boxstyle="square", ec='k', fc='w')) mng = plt.get_current_fig_manager() mng.window.showMaximized() # let user click on the image once pt_input = ginput(n=1, timeout=1e9, show_clicks=False) pt_input = np.array(pt_input) # if clicks next to <skip>, show another image if pt_input[0][0] > im_ms.shape[1] / 2: plt.close() continue else: # remove keep and skip buttons keep_button.set_visible(False) skip_button.set_visible(False) # create two new buttons add_button = plt.text(0, 0.9, 'add', size=16, ha="left", va="top", transform=plt.gca().transAxes, bbox=dict(boxstyle="square", ec='k', fc='w')) end_button = plt.text(1, 0.9, 'end', size=16, ha="right", va="top", transform=plt.gca().transAxes, bbox=dict(boxstyle="square", ec='k', fc='w')) # add multiple reference shorelines (until user clicks on <end> button) pts_sl = np.expand_dims(np.array([np.nan, np.nan]), axis=0) geoms = [] while 1: add_button.set_visible(False) end_button.set_visible(False) # update title (instructions) plt.title( 'Click points along the shoreline (enough points to capture the beach curvature).\n' + 'Start at one end of the beach.\n' + 'When finished digitizing, click <ENTER>', fontsize=14) plt.draw() # let user click on the shoreline pts = ginput(n=50000, timeout=1e9, show_clicks=True) pts_pix = np.array(pts) # convert pixel coordinates to world coordinates pts_world = SDS_tools.convert_pix2world( pts_pix[:, [1, 0]], georef) # interpolate between points clicked by the user (1m resolution) pts_world_interp = np.expand_dims(np.array( [np.nan, np.nan]), axis=0) for k in range(len(pts_world) - 1): pt_dist = np.linalg.norm(pts_world[k, :] - pts_world[k + 1, :]) xvals = np.arange(0, pt_dist) yvals = np.zeros(len(xvals)) pt_coords = np.zeros((len(xvals), 2)) pt_coords[:, 0] = xvals pt_coords[:, 1] = yvals phi = 0 deltax = pts_world[k + 1, 0] - pts_world[k, 0] deltay = pts_world[k + 1, 1] - pts_world[k, 1] phi = np.pi / 2 - np.math.atan2(deltax, deltay) tf = transform.EuclideanTransform( rotation=phi, translation=pts_world[k, :]) pts_world_interp = np.append(pts_world_interp, tf(pt_coords), axis=0) pts_world_interp = np.delete(pts_world_interp, 0, axis=0) # save as geometry (to create .geojson file later) geoms.append(geometry.LineString(pts_world_interp)) # convert to pixel coordinates and plot pts_pix_interp = SDS_tools.convert_world2pix( pts_world_interp, georef) pts_sl = np.append(pts_sl, pts_world_interp, axis=0) plt.plot(pts_pix_interp[:, 0], pts_pix_interp[:, 1], 'r--') plt.plot(pts_pix_interp[0, 0], pts_pix_interp[0, 1], 'ko') plt.plot(pts_pix_interp[-1, 0], pts_pix_interp[-1, 1], 'ko') # update title and buttons add_button.set_visible(True) end_button.set_visible(True) plt.title( 'click <add> to digitize another shoreline or <end> to finish and save the shoreline(s)', fontsize=14) plt.draw() # let the user click again (<add> another shoreline or <end>) pt_input = ginput(n=1, timeout=1e9, show_clicks=False) pt_input = np.array(pt_input) # if user clicks on <end>, save the points and break the loop if pt_input[0][0] > im_ms.shape[1] / 2: add_button.set_visible(False) end_button.set_visible(False) plt.title('Reference shoreline saved as ' + sitename + '_reference_shoreline.pkl and ' + sitename + '_reference_shoreline.geojson') plt.draw() ginput(n=1, timeout=3, show_clicks=False) plt.close() break pts_sl = np.delete(pts_sl, 0, axis=0) # convert world image coordinates to user-defined coordinate system image_epsg = metadata[satname]['epsg'][i] pts_coords = SDS_tools.convert_epsg(pts_sl, image_epsg, settings['output_epsg']) # save the reference shoreline as .pkl filepath = os.path.join(filepath_data, sitename) with open( os.path.join(filepath, sitename + '_reference_shoreline.pkl'), 'wb') as f: pickle.dump(pts_coords, f) # also store as .geojson in case user wants to drag-and-drop on GIS for verification for k, line in enumerate(geoms): gdf = gpd.GeoDataFrame(geometry=gpd.GeoSeries(line)) gdf.index = [k] gdf.loc[k, 'name'] = 'reference shoreline ' + str(k + 1) # store into geodataframe if k == 0: gdf_all = gdf else: gdf_all = gdf_all.append(gdf) gdf_all.crs = {'init': 'epsg:' + str(image_epsg)} # convert from image_epsg to user-defined coordinate system gdf_all = gdf_all.to_crs( {'init': 'epsg:' + str(settings['output_epsg'])}) # save as geojson gdf_all.to_file(os.path.join( filepath, sitename + '_reference_shoreline.geojson'), driver='GeoJSON', encoding='utf-8') print('Reference shoreline has been saved in ' + filepath) break return pts_coords
def adjust_detection(im_ms, cloud_mask, im_labels, im_ref_buffer, image_epsg, georef, settings, date, satname, buffer_size_pixels): """ Advanced version of show detection where the user can adjust the detected shorelines with a slide bar. KV WRL 2020 Arguments: ----------- im_ms: np.array RGB + downsampled NIR and SWIR cloud_mask: np.array 2D cloud mask with True where cloud pixels are im_labels: np.array 3D image containing a boolean image for each class in the order (sand, swash, water) im_ref_buffer: np.array Binary image containing a buffer around the reference shoreline image_epsg: int spatial reference system of the image from which the contours were extracted georef: np.array vector of 6 elements [Xtr, Xscale, Xshear, Ytr, Yshear, Yscale] date: string date at which the image was taken satname: string indicates the satname (L5,L7,L8 or S2) buffer_size_pixels: int buffer_size converted to number of pixels settings: dict with the following keys 'inputs': dict input parameters (sitename, filepath, polygon, dates, sat_list) 'output_epsg': int output spatial reference system as EPSG code 'save_figure': bool if True, saves a -jpg file for each mapped shoreline Returns: ----------- skip_image: boolean True if the user wants to skip the image, False otherwise shoreline: np.array array of points with the X and Y coordinates of the shoreline t_mndwi: float value of the MNDWI threshold used to map the shoreline """ sitename = settings['inputs']['sitename'] filepath_data = settings['inputs']['filepath'] # subfolder where the .jpg file is stored if the user accepts the shoreline detection filepath = os.path.join(filepath_data, sitename, 'jpg_files', 'detection') # format date date_str = datetime.strptime(date,'%Y-%m-%d-%H-%M-%S').strftime('%Y-%m-%d %H:%M:%S') im_RGB = SDS_preprocess.rescale_image_intensity(im_ms[:,:,[2,1,0]], cloud_mask, 99.9) # compute classified image im_class = np.copy(im_RGB) cmap = cm.get_cmap('tab20c') colorpalette = cmap(np.arange(0,13,1)) colours = np.zeros((3,4)) colours[0,:] = colorpalette[5] colours[1,:] = np.array([204/255,1,1,1]) colours[2,:] = np.array([0,91/255,1,1]) for k in range(0,im_labels.shape[2]): im_class[im_labels[:,:,k],0] = colours[k,0] im_class[im_labels[:,:,k],1] = colours[k,1] im_class[im_labels[:,:,k],2] = colours[k,2] # compute MNDWI grayscale image im_mndwi = SDS_tools.nd_index(im_ms[:,:,4], im_ms[:,:,1], cloud_mask) # buffer MNDWI using reference shoreline im_mndwi_buffer = np.copy(im_mndwi) im_mndwi_buffer[~im_ref_buffer] = np.nan # get MNDWI pixel intensity in each class (for histogram plot) int_sand = im_mndwi[im_labels[:,:,0]] int_ww = im_mndwi[im_labels[:,:,1]] int_water = im_mndwi[im_labels[:,:,2]] labels_other = np.logical_and(np.logical_and(~im_labels[:,:,0],~im_labels[:,:,1]),~im_labels[:,:,2]) int_other = im_mndwi[labels_other] # create figure if plt.get_fignums(): # if it exists, open the figure fig = plt.gcf() ax1 = fig.axes[0] ax2 = fig.axes[1] ax3 = fig.axes[2] ax4 = fig.axes[3] else: # else create a new figure fig = plt.figure() fig.set_size_inches([18, 9]) mng = plt.get_current_fig_manager() mng.window.showMaximized() gs = gridspec.GridSpec(2, 3, height_ratios=[4,1]) gs.update(bottom=0.05, top=0.95, left=0.03, right=0.97) ax1 = fig.add_subplot(gs[0,0]) ax2 = fig.add_subplot(gs[0,1], sharex=ax1, sharey=ax1) ax3 = fig.add_subplot(gs[0,2], sharex=ax1, sharey=ax1) ax4 = fig.add_subplot(gs[1,:]) ########################################################################## # to do: rotate image if too wide ########################################################################## # change the color of nans to either black (0.0) or white (1.0) or somewhere in between nan_color = 1.0 im_RGB = np.where(np.isnan(im_RGB), nan_color, im_RGB) im_class = np.where(np.isnan(im_class), 1.0, im_class) # plot image 1 (RGB) ax1.imshow(im_RGB) ax1.axis('off') ax1.set_title('%s - %s'%(sitename, satname), fontsize=12) # plot image 2 (classification) ax2.imshow(im_class) ax2.axis('off') orange_patch = mpatches.Patch(color=colours[0,:], label='sand') white_patch = mpatches.Patch(color=colours[1,:], label='whitewater') blue_patch = mpatches.Patch(color=colours[2,:], label='water') black_line = mlines.Line2D([],[],color='k',linestyle='-', label='shoreline') ax2.legend(handles=[orange_patch,white_patch,blue_patch, black_line], bbox_to_anchor=(1.1, 0.5), fontsize=10) ax2.set_title(date_str, fontsize=12) # plot image 3 (MNDWI) ax3.imshow(im_mndwi, cmap='bwr') ax3.axis('off') ax3.set_title('MNDWI', fontsize=12) # plot histogram of MNDWI values binwidth = 0.01 ax4.set_facecolor('0.75') ax4.yaxis.grid(color='w', linestyle='--', linewidth=0.5) ax4.set(ylabel='PDF',yticklabels=[], xlim=[-1,1]) if len(int_sand) > 0 and sum(~np.isnan(int_sand)) > 0: bins = np.arange(np.nanmin(int_sand), np.nanmax(int_sand) + binwidth, binwidth) ax4.hist(int_sand, bins=bins, density=True, color=colours[0,:], label='sand') if len(int_ww) > 0 and sum(~np.isnan(int_ww)) > 0: bins = np.arange(np.nanmin(int_ww), np.nanmax(int_ww) + binwidth, binwidth) ax4.hist(int_ww, bins=bins, density=True, color=colours[1,:], label='whitewater', alpha=0.75) if len(int_water) > 0 and sum(~np.isnan(int_water)) > 0: bins = np.arange(np.nanmin(int_water), np.nanmax(int_water) + binwidth, binwidth) ax4.hist(int_water, bins=bins, density=True, color=colours[2,:], label='water', alpha=0.75) if len(int_other) > 0 and sum(~np.isnan(int_other)) > 0: bins = np.arange(np.nanmin(int_other), np.nanmax(int_other) + binwidth, binwidth) ax4.hist(int_other, bins=bins, density=True, color='C4', label='other', alpha=0.5) # automatically map the shoreline based on the classifier if enough sand pixels try: if sum(sum(im_labels[:,:,0])) > 10: # use classification to refine threshold and extract the sand/water interface contours_mndwi, t_mndwi = find_wl_contours2(im_ms, im_labels, cloud_mask, buffer_size_pixels, im_ref_buffer) else: # find water contours on MNDWI grayscale image contours_mndwi, t_mndwi = find_wl_contours1(im_mndwi, cloud_mask, im_ref_buffer) except: print('Could not map shoreline so image was skipped') # clear axes and return skip_image=True, so that image is skipped above for ax in fig.axes: ax.clear() return True,[],[] # process the water contours into a shoreline shoreline = process_shoreline(contours_mndwi, cloud_mask, georef, image_epsg, settings) # convert shoreline to pixels if len(shoreline) > 0: sl_pix = SDS_tools.convert_world2pix(SDS_tools.convert_epsg(shoreline, settings['output_epsg'], image_epsg)[:,[0,1]], georef) else: sl_pix = np.array([[np.nan, np.nan],[np.nan, np.nan]]) # plot the shoreline on the images sl_plot1 = ax1.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3) sl_plot2 = ax2.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3) sl_plot3 = ax3.plot(sl_pix[:,0], sl_pix[:,1], 'k.', markersize=3) t_line = ax4.axvline(x=t_mndwi,ls='--', c='k', lw=1.5, label='threshold') ax4.legend(loc=1) plt.draw() # to update the plot # adjust the threshold manually by letting the user change the threshold ax4.set_title('Click on the plot below to change the location of the threhsold and adjust the shoreline detection. When finished, press <Enter>') while True: # let the user click on the threshold plot pt = ginput(n=1, show_clicks=True, timeout=-1) # if a point was clicked if len(pt) > 0: # if user clicked somewhere wrong and value is not between -1 and 1 if np.abs(pt[0][0]) >= 1: continue # update the threshold value t_mndwi = pt[0][0] # update the plot t_line.set_xdata([t_mndwi,t_mndwi]) # map contours with new threshold contours = measure.find_contours(im_mndwi_buffer, t_mndwi) # remove contours that contain NaNs (due to cloud pixels in the contour) contours = process_contours(contours) # process the water contours into a shoreline shoreline = process_shoreline(contours, cloud_mask, georef, image_epsg, settings) # convert shoreline to pixels if len(shoreline) > 0: sl_pix = SDS_tools.convert_world2pix(SDS_tools.convert_epsg(shoreline, settings['output_epsg'], image_epsg)[:,[0,1]], georef) else: sl_pix = np.array([[np.nan, np.nan],[np.nan, np.nan]]) # update the plotted shorelines sl_plot1[0].set_data([sl_pix[:,0], sl_pix[:,1]]) sl_plot2[0].set_data([sl_pix[:,0], sl_pix[:,1]]) sl_plot3[0].set_data([sl_pix[:,0], sl_pix[:,1]]) fig.canvas.draw_idle() else: ax4.set_title('MNDWI pixel intensities and threshold') break # let user manually accept/reject the image skip_image = False # set a key event to accept/reject the detections (see https://stackoverflow.com/a/15033071) # this variable needs to be immuatable so we can access it after the keypress event key_event = {} def press(event): # store what key was pressed in the dictionary key_event['pressed'] = event.key # let the user press a key, right arrow to keep the image, left arrow to skip it # to break the loop the user can press 'escape' while True: btn_keep = plt.text(1.1, 0.9, 'keep ⇨', size=12, ha="right", va="top", transform=ax1.transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) btn_skip = plt.text(-0.1, 0.9, '⇦ skip', size=12, ha="left", va="top", transform=ax1.transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) btn_esc = plt.text(0.5, 0, '<esc> to quit', size=12, ha="center", va="top", transform=ax1.transAxes, bbox=dict(boxstyle="square", ec='k',fc='w')) plt.draw() fig.canvas.mpl_connect('key_press_event', press) plt.waitforbuttonpress() # after button is pressed, remove the buttons btn_skip.remove() btn_keep.remove() btn_esc.remove() # keep/skip image according to the pressed key, 'escape' to break the loop if key_event.get('pressed') == 'right': skip_image = False break elif key_event.get('pressed') == 'left': skip_image = True break elif key_event.get('pressed') == 'escape': plt.close() raise StopIteration('User cancelled checking shoreline detection') else: plt.waitforbuttonpress() # if save_figure is True, save a .jpg under /jpg_files/detection if settings['save_figure'] and not skip_image: fig.savefig(os.path.join(filepath, date + '_' + satname + '.jpg'), dpi=150) # don't close the figure window, but remove all axes and settings, ready for next plot for ax in fig.axes: ax.clear() return skip_image, shoreline, t_mndwi
def evaluate_classifier(classifier, metadata, settings): """ Interactively visualise the new classifier. KV WRL 2018 Arguments: ----------- classifier: joblib object Multilayer Perceptron to be used for image classification metadata: dict contains all the information about the satellite images that were downloaded settings: dict contains the following fields: cloud_thresh: float value between 0 and 1 indicating the maximum cloud fraction in the image that is accepted sitename: string name of the site (also name of the folder where the images are stored) cloud_mask_issue: boolean True if there is an issue with the cloud mask and sand pixels are being masked on the images labels: dict the label name (key) and label number (value) for each class filepath_train: str directory in which to save the labelled data Returns: ----------- """ # create folder fp = os.path.join(os.getcwd(), 'evaluation') if not os.path.exists(fp): os.makedirs(fp) # initialize figure fig, ax = plt.subplots(1, 2, figsize=[17, 10], sharex=True, sharey=True, constrained_layout=True) mng = plt.get_current_fig_manager() mng.window.showMaximized() # create colormap for labels cmap = cm.get_cmap('tab20c') colorpalette = cmap(np.arange(0, 13, 1)) colours = np.zeros((3, 4)) colours[0, :] = colorpalette[5] colours[1, :] = np.array([204 / 255, 1, 1, 1]) colours[2, :] = np.array([0, 91 / 255, 1, 1]) # loop through satellites for satname in metadata.keys(): filepath = SDS_tools.get_filepath(settings['inputs'], satname) filenames = metadata[satname]['filenames'] # load classifiers and if satname in ['L5', 'L7', 'L8']: pixel_size = 15 elif satname == 'S2': pixel_size = 10 # convert settings['min_beach_area'] and settings['buffer_size'] from metres to pixels buffer_size_pixels = np.ceil(settings['buffer_size'] / pixel_size) min_beach_area_pixels = np.ceil(settings['min_beach_area'] / pixel_size**2) # loop through images for i in range(len(filenames)): # image filename fn = SDS_tools.get_filenames(filenames[i], filepath, satname) # read and preprocess image im_ms, georef, cloud_mask, im_extra, im_QA, im_nodata = SDS_preprocess.preprocess_single( fn, satname, settings['cloud_mask_issue']) image_epsg = metadata[satname]['epsg'][i] # calculate cloud cover cloud_cover = np.divide( sum(sum(cloud_mask.astype(int))), (cloud_mask.shape[0] * cloud_mask.shape[1])) # skip image if cloud cover is above threshold if cloud_cover > settings['cloud_thresh']: continue # calculate a buffer around the reference shoreline (if any has been digitised) im_ref_buffer = SDS_shoreline.create_shoreline_buffer( cloud_mask.shape, georef, image_epsg, pixel_size, settings) # classify image in 4 classes (sand, whitewater, water, other) with NN classifier im_classif, im_labels = SDS_shoreline.classify_image_NN( im_ms, im_extra, cloud_mask, min_beach_area_pixels, classifier) # there are two options to map the contours: # if there are pixels in the 'sand' class --> use find_wl_contours2 (enhanced) # otherwise use find_wl_contours2 (traditional) try: # use try/except structure for long runs if sum(sum(im_labels[:, :, 0])) < 10: # compute MNDWI image (SWIR-G) im_mndwi = SDS_tools.nd_index(im_ms[:, :, 4], im_ms[:, :, 1], cloud_mask) # find water contours on MNDWI grayscale image contours_mwi = SDS_shoreline.find_wl_contours1( im_mndwi, cloud_mask, im_ref_buffer) else: # use classification to refine threshold and extract the sand/water interface contours_wi, contours_mwi = SDS_shoreline.find_wl_contours2( im_ms, im_labels, cloud_mask, buffer_size_pixels, im_ref_buffer) except: print('Could not map shoreline for this image: ' + filenames[i]) continue # process the water contours into a shoreline shoreline = SDS_shoreline.process_shoreline( contours_mwi, cloud_mask, georef, image_epsg, settings) try: sl_pix = SDS_tools.convert_world2pix( SDS_tools.convert_epsg(shoreline, settings['output_epsg'], image_epsg)[:, [0, 1]], georef) except: # if try fails, just add nan into the shoreline vector so the next parts can still run sl_pix = np.array([[np.nan, np.nan], [np.nan, np.nan]]) # make a plot im_RGB = SDS_preprocess.rescale_image_intensity( im_ms[:, :, [2, 1, 0]], cloud_mask, 99.9) # create classified image im_class = np.copy(im_RGB) for k in range(0, im_labels.shape[2]): im_class[im_labels[:, :, k], 0] = colours[k, 0] im_class[im_labels[:, :, k], 1] = colours[k, 1] im_class[im_labels[:, :, k], 2] = colours[k, 2] # show images ax[0].imshow(im_RGB) ax[1].imshow(im_RGB) ax[1].imshow(im_class, alpha=0.5) ax[0].axis('off') ax[1].axis('off') filename = filenames[i][:filenames[i].find('.')][:-4] ax[0].set_title(filename) ax[0].plot(sl_pix[:, 0], sl_pix[:, 1], 'k.', markersize=3) ax[1].plot(sl_pix[:, 0], sl_pix[:, 1], 'k.', markersize=3) # save figure fig.savefig(os.path.join( fp, settings['inputs']['sitename'] + filename[:19] + '.jpg'), dpi=150) # clear axes for cax in fig.axes: cax.clear() # close the figure at the end plt.close()