Exemple #1
0
  def postprocess(self, results):
    """Postprocess results returned from model."""
    try:
      import coco_metric  # pylint: disable=g-import-not-at-top
    except ImportError:
      raise ImportError('To use the COCO dataset, you must clone the '
                        'repo https://github.com/tensorflow/models and add '
                        'tensorflow/models and tensorflow/models/research to '
                        'the PYTHONPATH, and compile the protobufs by '
                        'following https://github.com/tensorflow/models/blob/'
                        'master/research/object_detection/g3doc/installation.md'
                        '#protobuf-compilation ; To evaluate using COCO'
                        'metric, download and install Python COCO API from'
                        'https://github.com/cocodataset/cocoapi')

    pred_boxes = results[ssd_constants.PRED_BOXES]
    pred_scores = results[ssd_constants.PRED_SCORES]
    # TODO(haoyuzhang): maybe use these values for visualization.
    # gt_boxes = results['gt_boxes']
    # gt_classes = results['gt_classes']
    source_id = results[ssd_constants.SOURCE_ID]
    raw_shape = results[ssd_constants.RAW_SHAPE]

    # COCO evaluation requires processing COCO_NUM_VAL_IMAGES exactly once. Due
    # to rounding errors (i.e., COCO_NUM_VAL_IMAGES % batch_size != 0), setting
    # `num_eval_epochs` to 1 is not enough and will often miss some images. We
    # expect user to set `num_eval_epochs` to >1, which will leave some unused
    # images from previous steps in `predictions`. Here we check if we are doing
    # eval at a new global step.
    if results['global_step'] > self.eval_global_step:
      self.eval_global_step = results['global_step']
      self.predictions.clear()

    for i, sid in enumerate(source_id):
      self.predictions[int(sid)] = {
          ssd_constants.PRED_BOXES: pred_boxes[i],
          ssd_constants.PRED_SCORES: pred_scores[i],
          ssd_constants.SOURCE_ID: source_id[i],
          ssd_constants.RAW_SHAPE: raw_shape[i]
      }

    # COCO metric calculates mAP only after a full epoch of evaluation. Return
    # dummy results for top_N_accuracy to be compatible with benchmar_cnn.py.
    if len(self.predictions) >= ssd_constants.COCO_NUM_VAL_IMAGES:
      log_fn('Got results for all {:d} eval examples. Calculate mAP...'.format(
          ssd_constants.COCO_NUM_VAL_IMAGES))

      annotation_file = os.path.join(self.params.data_dir,
                                     ssd_constants.ANNOTATION_FILE)
      # Size of predictions before decoding about 15--30GB, while size after
      # decoding is 100--200MB. When using async eval mode, decoding takes
      # 20--30 seconds of main thread time but is necessary to avoid OOM during
      # inter-process communication.
      decoded_preds = coco_metric.decode_predictions(self.predictions.values())
      self.predictions.clear()

      if self.params.collect_eval_results_async:
        def _eval_results_getter():
          """Iteratively get eval results from async eval process."""
          while True:
            step, eval_results = self.async_eval_results_queue.get()
            self.eval_coco_ap = eval_results['COCO/AP']
            mlperf.logger.log_eval_accuracy(
                self.eval_coco_ap, step, self.batch_size * self.params.num_gpus,
                ssd_constants.COCO_NUM_TRAIN_IMAGES)
            if self.reached_target():
              # Reached target, clear all pending messages in predictions queue
              # and insert poison pill to stop the async eval process.
              while not self.async_eval_predictions_queue.empty():
                self.async_eval_predictions_queue.get()
              self.async_eval_predictions_queue.put('STOP')
              break

        if not self.async_eval_process:
          # Limiting the number of messages in predictions queue to prevent OOM.
          # Each message (predictions data) can potentially consume a lot of
          # memory, and normally there should only be few messages in the queue.
          # If often blocked on this, consider reducing eval frequency.
          self.async_eval_predictions_queue = multiprocessing.Queue(2)
          self.async_eval_results_queue = multiprocessing.Queue()

          # Reason to use a Process as opposed to Thread is mainly the
          # computationally intensive eval runner. Python multithreading is not
          # truly running in parallel, a runner thread would get significantly
          # delayed (or alternatively delay the main thread).
          self.async_eval_process = multiprocessing.Process(
              target=coco_metric.async_eval_runner,
              args=(self.async_eval_predictions_queue,
                    self.async_eval_results_queue,
                    annotation_file))
          self.async_eval_process.daemon = True
          self.async_eval_process.start()

          self.async_eval_results_getter_thread = threading.Thread(
              target=_eval_results_getter, args=())
          self.async_eval_results_getter_thread.daemon = True
          self.async_eval_results_getter_thread.start()

        self.async_eval_predictions_queue.put(
            (self.eval_global_step, decoded_preds))
        return {'top_1_accuracy': 0, 'top_5_accuracy': 0.}

      eval_results = coco_metric.compute_map(decoded_preds, annotation_file)
      self.eval_coco_ap = eval_results['COCO/AP']
      ret = {'top_1_accuracy': self.eval_coco_ap, 'top_5_accuracy': 0.}
      for metric_key, metric_value in eval_results.items():
        ret[constants.SIMPLE_VALUE_RESULT_PREFIX + metric_key] = metric_value
      mlperf.logger.log_eval_accuracy(self.eval_coco_ap, self.eval_global_step,
                                      self.batch_size * self.params.num_gpus,
                                      ssd_constants.COCO_NUM_TRAIN_IMAGES)
      return ret
    log_fn('Got {:d} out of {:d} eval examples.'
           ' Waiting for the remaining to calculate mAP...'.format(
               len(self.predictions), ssd_constants.COCO_NUM_VAL_IMAGES))
    return {'top_1_accuracy': self.eval_coco_ap, 'top_5_accuracy': 0.}
Exemple #2
0
  def postprocess(self, results):
    """Postprocess results returned from model."""
    try:
      import coco_metric  # pylint: disable=g-import-not-at-top
    except ImportError:
      raise ImportError('To use the COCO dataset, you must clone the '
                        'repo https://github.com/tensorflow/models and add '
                        'tensorflow/models and tensorflow/models/research to '
                        'the PYTHONPATH, and compile the protobufs by '
                        'following https://github.com/tensorflow/models/blob/'
                        'master/research/object_detection/g3doc/installation.md'
                        '#protobuf-compilation ; To evaluate using COCO'
                        'metric, download and install Python COCO API from'
                        'https://github.com/cocodataset/cocoapi')

    pred_boxes = results[ssd_constants.PRED_BOXES]
    pred_scores = results[ssd_constants.PRED_SCORES]
    # TODO(haoyuzhang): maybe use these values for visualization.
    # gt_boxes = results['gt_boxes']
    # gt_classes = results['gt_classes']
    source_id = results[ssd_constants.SOURCE_ID]
    raw_shape = results[ssd_constants.RAW_SHAPE]

    # COCO evaluation requires processing COCO_NUM_VAL_IMAGES exactly once. Due
    # to rounding errors (i.e., COCO_NUM_VAL_IMAGES % batch_size != 0), setting
    # `num_eval_epochs` to 1 is not enough and will often miss some images. We
    # expect user to set `num_eval_epochs` to >1, which will leave some unused
    # images from previous steps in `predictions`. Here we check if we are doing
    # eval at a new global step.
    if results['global_step'] > self.eval_global_step:
      self.eval_global_step = results['global_step']
      self.predictions.clear()

    for i, sid in enumerate(source_id):
      self.predictions[int(sid)] = {
          ssd_constants.PRED_BOXES: pred_boxes[i],
          ssd_constants.PRED_SCORES: pred_scores[i],
          ssd_constants.SOURCE_ID: source_id[i],
          ssd_constants.RAW_SHAPE: raw_shape[i]
      }

    # COCO metric calculates mAP only after a full epoch of evaluation. Return
    # dummy results for top_N_accuracy to be compatible with benchmar_cnn.py.
    if len(self.predictions) >= ssd_constants.COCO_NUM_VAL_IMAGES:
      print('Got results for all {:d} eval examples. Calculate mAP...'.format(
          ssd_constants.COCO_NUM_VAL_IMAGES))

      annotation_file = os.path.join(self.data_dir,
                                     ssd_constants.ANNOTATION_FILE)
      # Size of predictions before decoding about 15--30GB, while size after
      # decoding is 100--200MB. When using async eval mode, decoding takes
      # 20--30 seconds of main thread time but is necessary to avoid OOM during
      # inter-process communication.
      decoded_preds = coco_metric.decode_predictions(self.predictions.values())
      self.predictions.clear()

      eval_results = coco_metric.compute_map(decoded_preds, annotation_file)
      self.eval_coco_ap = eval_results['COCO/AP']
      ret = {'top_1_accuracy': self.eval_coco_ap, 'top_5_accuracy': 0.}
      return ret
    print('Got {:d} out of {:d} eval examples.'
           ' Waiting for the remaining to calculate mAP...'.format(
               len(self.predictions), ssd_constants.COCO_NUM_VAL_IMAGES))
    return {'top_1_accuracy': self.eval_coco_ap, 'top_5_accuracy': 0.}