Exemple #1
0
def coco_eval(result_files, result_types, coco, max_dets=(100, 300, 1000)):
    for res_type in result_types:
        assert res_type in [
            'proposal', 'proposal_fast', 'bbox', 'segm', 'keypoints'
        ]

    if mmcv.is_str(coco):
        coco = COCO(coco)
    assert isinstance(coco, COCO)

    if result_types == ['proposal_fast']:
        ar = fast_eval_recall(result_files, coco, np.array(max_dets))
        for i, num in enumerate(max_dets):
            print('AR@{}\t= {:.4f}'.format(num, ar[i]))
        return

    for res_type in result_types:
        result_file = result_files[res_type]
        # assert result_file.endswith('.json')

        coco_dets = coco.loadRes(result_file)
        img_ids = coco.getImgIds()
        iou_type = 'bbox' if res_type == 'proposal' else res_type
        cocoEval = COCOeval(coco, coco_dets, iou_type)
        cocoEval.params.imgIds = img_ids
        if res_type == 'proposal':
            cocoEval.params.useCats = 0
            cocoEval.params.maxDets = list(max_dets)
        cocoEval.evaluate()
        cocoEval.accumulate()
        cocoEval.summarize()
Exemple #2
0
    def __init__(self, root, ann_file, remove_images_without_annotations=True,
                 filter_crowd_anno=True, is_training=True):
        self.coco = COCO(ann_file)
        self.root = root
        self.img_ids = list(sorted(self.coco.imgs.keys()))
        self.filter_crowd_anno = filter_crowd_anno
        self.is_training = is_training

        # filter images without any annotations
        if remove_images_without_annotations:
            img_ids = []
            for img_id in self.img_ids:
                ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None)
                anno = self.coco.loadAnns(ann_ids)
                if has_valid_annotation(anno):
                    img_ids.append(img_id)
            self.img_ids = img_ids

        self.categories = {cat["id"]: cat["name"] for cat in self.coco.cats.values()}

        self.cat_ids_to_continuous_ids = {
            v: i for i, v in enumerate(self.coco.getCatIds())
        }
        self.continuous_ids_cat_ids = {
            v: k for k, v in self.cat_ids_to_continuous_ids.items()
        }
Exemple #3
0
 def load_annotations(self, ann_file):
     self.coco = COCO(ann_file)
     self.cat_ids = self.coco.getCatIds()
     self.cat2label = {
         cat_id: i + 1
         for i, cat_id in enumerate(self.cat_ids)
     }
     self.img_ids = self.coco.getImgIds()
     img_infos = []
     for i in self.img_ids:
         info = self.coco.loadImgs([i])[0]
         info['filename'] = info['file_name']
         img_infos.append(info)
     return img_infos
Exemple #4
0
def convert_to_coco_api(ds):
    coco_ds = COCO()
    # annotation IDs need to start at 1, not 0, see torchvision issue #1530
    ann_id = 1
    dataset = {'images': [], 'categories': [], 'annotations': []}
    categories = set()
    for img_idx in range(len(ds)):
        # find better way to get target
        # targets = ds.get_annotations(img_idx)
        img, targets = ds[img_idx]
        image_id = targets["image_id"].item()
        img_dict = {}
        img_dict['id'] = image_id
        img_dict['height'] = img.shape[-2]
        img_dict['width'] = img.shape[-1]
        dataset['images'].append(img_dict)
        bboxes = targets["boxes"]
        bboxes[:, 2:] -= bboxes[:, :2]
        bboxes = bboxes.tolist()
        labels = targets['labels'].tolist()
        areas = targets['area'].tolist()
        iscrowd = targets['iscrowd'].tolist()
        if 'masks' in targets:
            masks = targets['masks']
            # make masks Fortran contiguous for coco_mask
            masks = masks.permute(0, 2, 1).contiguous().permute(0, 2, 1)
        if 'keypoints' in targets:
            keypoints = targets['keypoints']
            keypoints = keypoints.reshape(keypoints.shape[0], -1).tolist()
        num_objs = len(bboxes)
        for i in range(num_objs):
            ann = {}
            ann['image_id'] = image_id
            ann['bbox'] = bboxes[i]
            ann['category_id'] = labels[i]
            categories.add(labels[i])
            ann['area'] = areas[i]
            ann['iscrowd'] = iscrowd[i]
            ann['id'] = ann_id
            if 'masks' in targets:
                ann["segmentation"] = coco_mask.encode(masks[i].numpy())
            if 'keypoints' in targets:
                ann['keypoints'] = keypoints[i]
                ann['num_keypoints'] = sum(k != 0 for k in keypoints[i][2::3])
            dataset['annotations'].append(ann)
            ann_id += 1
    dataset['categories'] = [{'id': i} for i in sorted(categories)]
    coco_ds.dataset = dataset
    coco_ds.createIndex()
    return coco_ds
Exemple #5
0
    def __init__(self,
                 data_folder,
                 jason_file,
                 image_folder,
                 offset_folder,
                 transform,
                 train=True):
        self.image_folder = image_folder
        self.offset_folder = offset_folder
        self.is_train = train
        self.data_folder = data_folder
        self.disc_radius = 10
        self.transform = transform
        self.max_len = 100
        self.debug = False
        # self.debug = True
        self.gt_path = data_folder + '/' + jason_file
        self.fiber_coco = COCO(self.gt_path)
        self.ids = list(self.fiber_coco.anns.keys())
        self.img_ids = list(self.fiber_coco.imgs.keys())

        if train:
            self.anno = []
            with open(self.gt_path) as anno_file:
                self.anno.extend(json.load(anno_file))
Exemple #6
0
    def update(self, predictions):
        img_ids = list(np.unique(list(predictions.keys())))
        self.img_ids.extend(img_ids)

        for iou_type in self.iou_types:
            results = self.prepare(predictions, iou_type)
            coco_dt = loadRes(self.coco_gt, results) if results else COCO()
            coco_eval = self.coco_eval[iou_type]

            coco_eval.cocoDt = coco_dt
            coco_eval.params.imgIds = list(img_ids)
            img_ids, eval_imgs = evaluate(coco_eval)

            self.eval_imgs[iou_type].append(eval_imgs)
Exemple #7
0
def coco_process():
    """
	Process COCO Images
	"""
    # Define COCO Data to Gather
    dataType = args.dataset + '2017'
    annFile = '{}/annotations/person_keypoints_{}.json'.format(
        args.dataDir, dataType)

    # Remove Current h5 File from Output
    if os.path.exists(args.output):
        os.remove(args.output)

    # initialize COCO api for person keypoints annotations
    coco = COCO(annFile)

    # get all images containing given categories, select one at random
    catIds = coco.getCatIds(catNms=['person'])
    imgIds = coco.getImgIds(catIds=catIds)

    # Joint names
    with open(annFile) as f:
        json_data = json.load(f)
    keypoint_names = json_data['categories'][0]['keypoints']

    # Open h5 File
    h5f = h5py.File(args.output, 'a')

    start_time = time.time()
    # for all iterations
    for count in range(min(args.cnt, len(imgIds))):

        # load image + keypoints
        I, img = load(annFile, coco, imgIds, dataType, count)

        # load annotations
        annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None)
        anns = coco.loadAnns(annIds)

        # Create Dataframe
        df = keypoints_df(anns)

        # If Img has any Keypoints
        if df is not None:
            # Scale Img and Keypoints
            im_scaled, df_scaled = scale(I, df)

            # Write to h5
            h5_write(img, h5f, df_scaled, im_scaled)

            # If testing, test all and exit
            if args.testing == True:
                h5f.close()

                coco_test_img(df, df_scaled, im_scaled, I, coco, anns)

                h5_attributes(keypoint_names)

                coco_test_h5()

                exit()

        else:
            # Disregard image with no keypoints
            pass

        if count % 100 == 0:
            print('{} Samples Done - {} Taken'.format(
                count,
                (str(datetime.timedelta(seconds=(time.time() - start_time))))))

    return keypoint_names
Exemple #8
0
class CocoDataset(CustomDataset):

    CLASSES = ('person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
               'train', 'truck', 'boat', 'traffic_light', 'fire_hydrant',
               'stop_sign', 'parking_meter', 'bench', 'bird', 'cat', 'dog',
               'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe',
               'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
               'skis', 'snowboard', 'sports_ball', 'kite', 'baseball_bat',
               'baseball_glove', 'skateboard', 'surfboard', 'tennis_racket',
               'bottle', 'wine_glass', 'cup', 'fork', 'knife', 'spoon', 'bowl',
               'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot',
               'hot_dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
               'potted_plant', 'bed', 'dining_table', 'toilet', 'tv', 'laptop',
               'mouse', 'remote', 'keyboard', 'cell_phone', 'microwave',
               'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock',
               'vase', 'scissors', 'teddy_bear', 'hair_drier', 'toothbrush')

    def load_annotations(self, ann_file):
        self.coco = COCO(ann_file)
        self.cat_ids = self.coco.getCatIds()
        self.cat2label = {
            cat_id: i + 1
            for i, cat_id in enumerate(self.cat_ids)
        }
        self.img_ids = self.coco.getImgIds()
        img_infos = []
        for i in self.img_ids:
            info = self.coco.loadImgs([i])[0]
            info['filename'] = info['file_name']
            img_infos.append(info)
        return img_infos

    def get_ann_info(self, idx):
        img_id = self.img_infos[idx]['id']
        ann_ids = self.coco.getAnnIds(imgIds=[img_id])
        ann_info = self.coco.loadAnns(ann_ids)
        return self._parse_ann_info(ann_info, self.with_mask)

    def _filter_imgs(self, min_size=32):
        """Filter images too small or without ground truths."""
        valid_inds = []
        ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values())
        for i, img_info in enumerate(self.img_infos):
            if self.img_ids[i] not in ids_with_ann:
                continue
            if min(img_info['width'], img_info['height']) >= min_size:
                valid_inds.append(i)
        return valid_inds

    def _parse_ann_info(self, ann_info, with_mask=True):
        """Parse bbox and mask annotation.

        Args:
            ann_info (list[dict]): Annotation info of an image.
            with_mask (bool): Whether to parse mask annotations.

        Returns:
            dict: A dict containing the following keys: bboxes, bboxes_ignore,
                labels, masks, mask_polys, poly_lens.
        """
        gt_bboxes = []
        gt_labels = []
        gt_bboxes_ignore = []
        # Two formats are provided.
        # 1. mask: a binary map of the same size of the image.
        # 2. polys: each mask consists of one or several polys, each poly is a
        # list of float.
        if with_mask:
            gt_masks = []
            gt_mask_polys = []
            gt_poly_lens = []
        for i, ann in enumerate(ann_info):
            if ann.get('ignore', False):
                continue
            x1, y1, w, h = ann['bbox']
            if ann['area'] <= 0 or w < 1 or h < 1:
                continue
            bbox = [x1, y1, x1 + w - 1, y1 + h - 1]
            if ann['iscrowd']:
                gt_bboxes_ignore.append(bbox)
            else:
                gt_bboxes.append(bbox)
                gt_labels.append(self.cat2label[ann['category_id']])
            if with_mask:
                gt_masks.append(self.coco.annToMask(ann))
                mask_polys = [
                    p for p in ann['segmentation'] if len(p) >= 6
                ]  # valid polygons have >= 3 points (6 coordinates)
                poly_lens = [len(p) for p in mask_polys]
                gt_mask_polys.append(mask_polys)
                gt_poly_lens.extend(poly_lens)
        if gt_bboxes:
            gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
            gt_labels = np.array(gt_labels, dtype=np.int64)
        else:
            gt_bboxes = np.zeros((0, 4), dtype=np.float32)
            gt_labels = np.array([], dtype=np.int64)

        if gt_bboxes_ignore:
            gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
        else:
            gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)

        ann = dict(
            bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore)

        if with_mask:
            ann['masks'] = gt_masks
            # poly format is not used in the current implementation
            ann['mask_polys'] = gt_mask_polys
            ann['poly_lens'] = gt_poly_lens
        return ann
Exemple #9
0
# -*- coding: utf-8 -*-
"""
Created on Sat Feb 22 16:58:58 2020
@author: zhangyiqian
"""
from cocoapi.PythonAPI.pycocotools.coco import COCO
import numpy as np
from skimage.io import imread, imshow, imsave
import matplotlib.pyplot as plt
from skimage import draw
import random
import cv2 as cv
import time

annFile = '/home/yiqian/Documents/dataset/COCO/annotations_valstuff/stuff_val2017.json'
coco = COCO(annFile)
imgIds = coco.getImgIds()
img = coco.loadImgs(imgIds[0])[0]
I = imread(img['coco_url'])
plt.figure()
imshow(I)
# catIds = coco.getCatIds(catNms=['person']);
annIds = coco.getAnnIds(imgIds=img['id'],
                        catIds=coco.getCatIds(),
                        iscrowd=False)
# annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=False)
anns = coco.loadAnns(annIds)

coco.showAnns(anns)

# sample scribble areas based on uniform distribution
def read_data(data_dir, image_size, pixels_per_grid=32, no_label=False):
    """
    Load the data and preprocessing for YOLO detector
    :param data_dir: str, path to the directory to read. It should include class_map, anchors, annotations
    :image_size: tuple, image size for resizing images
    :pixels_per_gird: int, the actual size of a grid
    :no_label: bool, whetehr to load labels
    :return: X_set: np.ndarray, shape: (N, H, W, C).
             y_set: np.ndarray, shape: (N, g_H, g_W, anchors, 5 + num_classes).
    """
    im_dir = os.path.join(data_dir, 'val2017')
    class_map_path = '/home/intern/data/coco/classes_coco.json'

    #     class_map_path = os.path.join(data_dir, 'classes.json')
    #anchors_path = os.path.join(data_dir, 'anchors.json')
    class_map = load_json(class_map_path)
    anchors = load_json('/home/intern/data/face/train/anchors.json')
    #anchors = load_json(anchors_path)
    num_classes = len(class_map)
    grid_h, grid_w = [image_size[i] // pixels_per_grid for i in range(2)]
    im_paths = []
    for ext in IM_EXTENSIONS:
        im_paths.extend(glob.glob(os.path.join(im_dir, '*.{}'.format(ext))))
    #anno_dir = os.path.join(data_dir, 'annotations')
    images = []
    labels = []
###########################################################################
    dataDir='/home/intern/data/coco'
    dataType='val2017'
    annFile='{}/annotations/instances_{}.json'.format(dataDir,dataType)
    coco=COCO(annFile)
    all_file_name = coco.getImgIds()#int type
###########################################################################
    for im_path in im_paths:
        # load image and resize image
        im = imread(im_path)
        #print(im_path)
        im = np.array(im, dtype=np.float32)
        im_origina_sizes = im.shape[:2]
        im = resize(im, (image_size[1], image_size[0]))
        if len(im.shape) == 2:
            im = np.expand_dims(im, 2)
            im = np.concatenate([im, im, im], -1)
        images.append(im)

        if no_label:
            labels.append(0)
            continue
        # load bboxes and reshape for yolo model
        name = os.path.splitext(os.path.basename(im_path))[0]
        ###########################################################################
        name_nonzero_int = int(name.lstrip('0'))#str type -> int(remove '0')
        real_anno = {}
        annos_one_img = coco.getAnnIds(imgIds=[name_nonzero_int])#annotations one img
        for i in range(0,len(annos_one_img)):
            anno_contents = coco.loadAnns(ids=[annos_one_img[i]])#info of one anno->type: [{}]
            anno_contents[0]['category_id']
            category_name = coco.loadCats(ids=[anno_contents[0]['category_id']])[0]['name']#name
            bbbox = anno_contents[0]['bbox']#bbox [x,y,w,h]
            trans_bbbox = [bbbox[0], bbbox[1], bbbox[0]+bbbox[2], bbbox[1]+bbbox[3]]#[x_min,y_min,x_max,y_max]
            if category_name in real_anno:
                real_anno[category_name].append(trans_bbbox)
            else:
                real_anno[category_name] = [trans_bbbox]
        ###########################################################################
        #anno_path = os.path.join(anno_dir, '{}.anno'.format(name))
        #anno = load_json(anno_path)
        anno = real_anno
        #print(anno)
        label = np.zeros((grid_h, grid_w, len(anchors), 5 + num_classes))
        for c_idx, c_name in class_map.items():
            
            if c_name not in anno:
                continue
            #print(anno[c_name])
            for x_min, y_min, x_max, y_max in anno[c_name]:
                oh, ow = im_origina_sizes
                # normalize object coordinates and clip the values
                x_min, y_min, x_max, y_max = x_min / ow, y_min / oh, x_max / ow, y_max / oh
                x_min, y_min, x_max, y_max = np.clip([x_min, y_min, x_max, y_max], 0, 1)
                # assign the values to the best anchor
                anchor_boxes = np.array(anchors) / np.array([ow, oh])
                best_anchor = get_best_anchor(
                    anchor_boxes, [x_max - x_min, y_max - y_min])
                cx = int(np.floor(0.5 * (x_min + x_max) * grid_w))
                cy = int(np.floor(0.5 * (y_min + y_max) * grid_h))
                label[cy, cx, best_anchor, 0:4] = [x_min, y_min, x_max, y_max]
                label[cy, cx, best_anchor, 4] = 1.0
                label[cy, cx, best_anchor, 5 + int(c_idx)] = 1.0
        labels.append(label)

    X_set = np.array(images, dtype=np.float32)
    y_set = np.array(labels, dtype=np.float32)

    return X_set, y_set
Exemple #11
0
class COCOYoloDataset:
    """YOLOV4 Dataset for COCO."""
    def __init__(self, root, ann_file, remove_images_without_annotations=True,
                 filter_crowd_anno=True, is_training=True):
        self.coco = COCO(ann_file)
        self.root = root
        self.img_ids = list(sorted(self.coco.imgs.keys()))
        self.filter_crowd_anno = filter_crowd_anno
        self.is_training = is_training

        # filter images without any annotations
        if remove_images_without_annotations:
            img_ids = []
            for img_id in self.img_ids:
                ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None)
                anno = self.coco.loadAnns(ann_ids)
                if has_valid_annotation(anno):
                    img_ids.append(img_id)
            self.img_ids = img_ids

        self.categories = {cat["id"]: cat["name"] for cat in self.coco.cats.values()}

        self.cat_ids_to_continuous_ids = {
            v: i for i, v in enumerate(self.coco.getCatIds())
        }
        self.continuous_ids_cat_ids = {
            v: k for k, v in self.cat_ids_to_continuous_ids.items()
        }

    def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            (img, target) (tuple): target is a dictionary contains "bbox", "segmentation" or "keypoints",
                generated by the image's annotation. img is a PIL image.
        """
        coco = self.coco
        img_id = self.img_ids[index]
        img_path = coco.loadImgs(img_id)[0]["file_name"]
        img = Image.open(os.path.join(self.root, img_path)).convert("RGB")
        if not self.is_training:
            return img, img_id

        ann_ids = coco.getAnnIds(imgIds=img_id)
        target = coco.loadAnns(ann_ids)
        # filter crowd annotations
        if self.filter_crowd_anno:
            annos = [anno for anno in target if anno["iscrowd"] == 0]
        else:
            annos = [anno for anno in target]

        target = {}
        boxes = [anno["bbox"] for anno in annos]
        target["bboxes"] = boxes

        classes = [anno["category_id"] for anno in annos]
        classes = [self.cat_ids_to_continuous_ids[cl] for cl in classes]
        target["labels"] = classes

        bboxes = target['bboxes']
        labels = target['labels']
        out_target = []
        for bbox, label in zip(bboxes, labels):
            tmp = []
            # convert to [x_min y_min x_max y_max]
            bbox = self._conve_top_down(bbox)
            tmp.extend(bbox)
            tmp.append(int(label))
            # tmp [x_min y_min x_max y_max, label]
            out_target.append(tmp)
        return img, out_target, [], [], [], [], [], []

    def __len__(self):
        return len(self.img_ids)

    def _conve_top_down(self, bbox):
        x_min = bbox[0]
        y_min = bbox[1]
        w = bbox[2]
        h = bbox[3]
        return [x_min, y_min, x_min+w, y_min+h]
Exemple #12
0
def loadRes(self, resFile):
    """
    Load result file and return a result api object.
    Args:
        self (obj): coco object with ground truth annotations
        resFile (str): file name of result file
    Returns:
    res (obj): result api object
    """
    res = COCO()
    res.dataset['images'] = [img for img in self.dataset['images']]

    # print('Loading and preparing results...')
    # tic = time.time()
    if isinstance(resFile, torch._six.string_classes):
        anns = json.load(open(resFile))
    elif type(resFile) == np.ndarray:
        anns = self.loadNumpyAnnotations(resFile)
    else:
        anns = resFile
    assert type(anns) == list, 'results in not an array of objects'
    annsImgIds = [ann['image_id'] for ann in anns]
    assert set(annsImgIds) == (set(annsImgIds) & set(self.getImgIds())), \
        'Results do not correspond to current coco set'
    if 'caption' in anns[0]:
        imgIds = set([img['id'] for img in res.dataset['images']]) & set(
            [ann['image_id'] for ann in anns])
        res.dataset['images'] = [
            img for img in res.dataset['images'] if img['id'] in imgIds
        ]
        for id, ann in enumerate(anns):
            ann['id'] = id + 1
    elif 'bbox' in anns[0] and not anns[0]['bbox'] == []:
        res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
        for id, ann in enumerate(anns):
            bb = ann['bbox']
            x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]]
            if 'segmentation' not in ann:
                ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]]
            ann['area'] = bb[2] * bb[3]
            ann['id'] = id + 1
            ann['iscrowd'] = 0
    elif 'segmentation' in anns[0]:
        res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
        for id, ann in enumerate(anns):
            # now only support compressed RLE format as segmentation results
            ann['area'] = maskUtils.area(ann['segmentation'])
            if 'bbox' not in ann:
                ann['bbox'] = maskUtils.toBbox(ann['segmentation'])
            ann['id'] = id + 1
            ann['iscrowd'] = 0
    elif 'keypoints' in anns[0]:
        res.dataset['categories'] = copy.deepcopy(self.dataset['categories'])
        for id, ann in enumerate(anns):
            s = ann['keypoints']
            x = s[0::3]
            y = s[1::3]
            x1, x2, y1, y2 = np.min(x), np.max(x), np.min(y), np.max(y)
            ann['area'] = (x2 - x1) * (y2 - y1)
            ann['id'] = id + 1
            ann['bbox'] = [x1, y1, x2 - x1, y2 - y1]
    # print('DONE (t={:0.2f}s)'.format(time.time()- tic))

    res.dataset['annotations'] = anns
    createIndex(res)
    return res
Exemple #13
0
#SET THESE PATHS
gt_path = './GT/AVD_split1_test.json'
results_path = './my_results.json'
#gather the object instance ids
all_catIds = [
    1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
    22, 23, 24, 25, 26, 27
]
known_catIds = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]
novel_catIds = [18, 19, 20, 21, 22, 23, 24, 25, 26, 27]

iouThrs = .5
maxDets = [1, 10, 100]
#initialize COCO ground truth api
cocoGt = COCO(gt_path)
#initialize COCO detections api
cocoDt = cocoGt.loadRes(my_results.json)

annType = 'bbox'
cocoEval = COCOeval(cocoGt, cocoDt, annType)
cocoEval.params.iouThrs = np.array([iouThrs])
cocoEval.params.maxDets = maxDets
#cocoEval.params.areaRng = [[0, 10000000000.0], [416, 10000000000.0 ], [0, 416], [416, 1250], [1250, 3750], [3750, 7500], [7500,10000000000.0]]
#cocoEval.params.areaRngLbl = ['all', 'valid', 'l0', 'l1', 'l2', 'l3', 'l4']
cocoEval.params.areaRng = [[0, 10000000000.0]]
cocoEval.params.areaRngLbl = ['all']
cocoEval.params.useSegs = [0]

catIds_types = [all_catIds, known_catIds, novel_catIds]
results = []