Exemple #1
0
    def __init__(self, params):

        # transfer parameters to self
        for key, val in params.items():
            setattr(self, key, val)

        self.agent = Agent(params)
        self.save_path = None
        self.train_environment = env(params, 'train')  # loaded train data here
        self.dev_test_environment = env(params, 'dev')  # loaded dev data here
        self.test_test_environment = env(params,
                                         'test')  # loaded test data here
        self.test_environment = self.dev_test_environment
        self.rev_relation_vocab = self.train_environment.grapher.rev_relation_vocab
        self.rev_entity_vocab = self.train_environment.grapher.rev_entity_vocab
        self.max_hits_at_10 = 0
        self.disc_size = 5
        self.ePAD = self.entity_vocab['PAD']
        self.rPAD = self.relation_vocab['PAD']
        # optimize
        self.baseline = ReactiveBaseline(l=self.Lambda)
        self.optimizer = tf.train.AdamOptimizer(self.learning_rate)
        self.input_dir = params['data_input_dir']
        self.disc_embedding_size = 2 * params['embedding_size']
        self.discriminator = Discriminator(self.disc_size,
                                           self.disc_embedding_size)
        self.num_rollouts = params['num_rollouts']
        self.num_iter = params['total_iterations']
Exemple #2
0
    def __init__(self, params):

        self.batch_size = params['batch_size']
        self.num_rollouts = params['num_rollouts']
        self.action_vocab_size = len(params['relation_vocab'])
        self.entity_vocab_size = len(params['entity_vocab'])
        self.embedding_size = params['embedding_size']
        self.train_env = env(params,'train')
        self.test_env = env(params,'test')
        self.eval_every = params['eval_every']
        self.learning_rate = params['learning_rate_judge']
        self.total_iteration = params['total_iterations']
        self.optimizer = tf.train.AdamOptimizer(self.learning_rate)
Exemple #3
0
    def __init__(self, params):

        # transfer parameters to self
        for key, val in params.items(): setattr(self, key, val);

        self.agent = Agent(params)
        self.save_path = None
        self.train_environment = env(params, 'train')
        self.dev_test_environment = env(params, 'dev')
        self.test_test_environment = env(params, 'test')
        self.test_environment = self.dev_test_environment
        self.rev_relation_vocab = self.train_environment.grapher.rev_relation_vocab
        self.rev_entity_vocab = self.train_environment.grapher.rev_entity_vocab
        self.max_hits_at_10 = 0
        self.ePAD = self.entity_vocab['PAD']
        self.rPAD = self.relation_vocab['PAD']
        # optimize
        self.baseline = ReactiveBaseline(l=self.Lambda)
        self.optimizer = tf.train.AdamOptimizer(self.learning_rate)
Exemple #4
0
    def __init__(self, params):

        # transfer parameters to self
        for key, val in params.items():
            setattr(self, key, val)

        self.agent = Agent(params)
        self.save_path = None
        self.train_environment = env(params, 'train')
        self.dev_test_environment = env(params, 'dev')
        self.test_test_environment = env(params, 'test')
        self.test_environment = self.dev_test_environment
        self.rev_relation_vocab = self.train_environment.grapher.rev_relation_vocab
        self.rev_entity_vocab = self.train_environment.grapher.rev_entity_vocab
        self.max_hits_at_10 = 0
        self.ePAD = self.entity_vocab['PAD']
        self.rPAD = self.relation_vocab['PAD']
        self.global_step = 0
        self.decaying_beta = tf.keras.optimizers.schedules.ExponentialDecay(
            self.beta, decay_steps=200, decay_rate=0.90, staircase=True)
        # optimize
        self.baseline = ReactiveBaseline(l=self.Lambda)
        # self.optimizer = tf.compat.v1.train.AdamOptimizer(self.learning_rate)
        self.optimizer = tf.keras.optimizers.Adam(self.learning_rate)