def _create_mapping_loader(config, dataset_class, tf3, partition, truncate=False, truncate_pc=None, tencrop=False, shuffle=False): if truncate: print("Note: creating mapping loader with truncate == True") if tencrop: assert (tf3 is None) imgs_list = [] if config.test_on_all_frame and partition == "test": for i in xrange(10): imgs_curr = dataset_class(root=config.dataset_root, transform=tf3, frame=i, crop=config.crop_by_bb, partition=partition) if truncate: print("shrinking dataset from %d" % len(imgs_curr)) imgs_curr = TruncatedDataset(imgs_curr, pc=truncate_pc) print("... to %d" % len(imgs_curr)) if tencrop: imgs_curr = TenCropAndFinish(imgs_curr, input_sz=config.input_sz, include_rgb=config.include_rgb) imgs_list.append(imgs_curr) else: for i in xrange(config.base_num): imgs_curr = dataset_class(root=config.dataset_root, transform=tf3, frame=config.base_frame + config.base_interval * i, crop=config.crop_by_bb, partition=partition) if truncate: print("shrinking dataset from %d" % len(imgs_curr)) imgs_curr = TruncatedDataset(imgs_curr, pc=truncate_pc) print("... to %d" % len(imgs_curr)) if tencrop: imgs_curr = TenCropAndFinish(imgs_curr, input_sz=config.input_sz, include_rgb=config.include_rgb) imgs_list.append(imgs_curr) imgs = ConcatDataset(imgs_list) dataloader = torch.utils.data.DataLoader(imgs, batch_size=config.batch_sz, # full batch shuffle=shuffle, num_workers=0, drop_last=False) if not shuffle: assert (isinstance(dataloader.sampler, torch.utils.data.sampler.SequentialSampler)) return dataloader
def _create_mapping_loader(config, dataset_class, tf3, partitions, target_transform=None, truncate=False, truncate_pc=None, tencrop=False, shuffle=False): if truncate: print("Note: creating mapping loader with truncate == True") if tencrop: assert (tf3 is None) imgs_list = [] for partition in partitions: if "STL10" == config.dataset: imgs_curr = dataset_class(root=config.dataset_root, transform=tf3, split=partition, target_transform=target_transform) elif config.dataset == "MNIST-adv": imgs_curr = dataset_class( root=config.dataset_root, transform=tf3, train=partition, target_transform=target_transform) + AdversarialDataset( config.adv_path, config.adv_n) else: imgs_curr = dataset_class(root=config.dataset_root, transform=tf3, train=partition, target_transform=target_transform) if truncate: print("shrinking dataset from %d" % len(imgs_curr)) imgs_curr = TruncatedDataset(imgs_curr, pc=truncate_pc) print("... to %d" % len(imgs_curr)) if tencrop: imgs_curr = TenCropAndFinish(imgs_curr, input_sz=config.input_sz, include_rgb=config.include_rgb) imgs_list.append(imgs_curr) imgs = ConcatDataset(imgs_list) dataloader = torch.utils.data.DataLoader( imgs, batch_size=config.batch_sz, # full batch shuffle=shuffle, num_workers=0, drop_last=False) if not shuffle: assert (isinstance(dataloader.sampler, torch.utils.data.sampler.SequentialSampler)) return dataloader
def main(): parser = argparse.ArgumentParser() parser.add_argument("--model_ind", type=int, required=True) parser.add_argument("--arch", type=str, required=True) parser.add_argument("--head_lr", type=float, required=True) parser.add_argument("--trunk_lr", type=float, required=True) parser.add_argument("--num_epochs", type=int, default=3200) parser.add_argument("--new_batch_sz", type=int, default=-1) parser.add_argument("--old_model_ind", type=int, required=True) parser.add_argument("--penultimate_features", default=False, action="store_true") parser.add_argument("--random_affine", default=False, action="store_true") parser.add_argument("--affine_p", type=float, default=0.5) parser.add_argument("--cutout", default=False, action="store_true") parser.add_argument("--cutout_p", type=float, default=0.5) parser.add_argument("--cutout_max_box", type=float, default=0.5) parser.add_argument("--restart", default=False, action="store_true") parser.add_argument("--lr_schedule", type=int, nargs="+", default=[]) parser.add_argument("--lr_mult", type=float, default=0.5) parser.add_argument("--restart_new_model_ind", default=False, action="store_true") parser.add_argument("--new_model_ind", type=int, default=0) parser.add_argument("--out_root", type=str, default="/scratch/shared/slow/xuji/iid_private") config = parser.parse_args() # new config # Setup ---------------------------------------------------------------------- config.contiguous_sz = 10 # Tencrop config.out_dir = os.path.join(config.out_root, str(config.model_ind)) if not os.path.exists(config.out_dir): os.makedirs(config.out_dir) if config.restart: given_config = config reloaded_config_path = os.path.join(given_config.out_dir, "config.pickle") print("Loading restarting config from: %s" % reloaded_config_path) with open(reloaded_config_path, "rb") as config_f: config = pickle.load(config_f) assert (config.model_ind == given_config.model_ind) config.restart = True config.num_epochs = given_config.num_epochs # train for longer config.restart_new_model_ind = given_config.restart_new_model_ind config.new_model_ind = given_config.new_model_ind start_epoch = config.last_epoch + 1 print("...restarting from epoch %d" % start_epoch) # in case we overshot without saving config.epoch_acc = config.epoch_acc[:start_epoch] config.epoch_loss = config.epoch_loss[:start_epoch] else: config.epoch_acc = [] config.epoch_loss = [] start_epoch = 0 # old config only used retrospectively for setting up model at start reloaded_config_path = os.path.join( os.path.join(config.out_root, str(config.old_model_ind)), "config.pickle") print("Loading old features config from: %s" % reloaded_config_path) with open(reloaded_config_path, "rb") as config_f: old_config = pickle.load(config_f) assert (old_config.model_ind == config.old_model_ind) if config.new_batch_sz == -1: config.new_batch_sz = old_config.batch_sz fig, axarr = plt.subplots(2, sharex=False, figsize=(20, 20)) # Data ----------------------------------------------------------------------- assert (old_config.dataset == "STL10") # make supervised data: train on train, test on test, unlabelled is unused tf1, tf2, tf3 = sobel_make_transforms(old_config, random_affine=config.random_affine, cutout=config.cutout, cutout_p=config.cutout_p, cutout_max_box=config.cutout_max_box, affine_p=config.affine_p) dataset_class = torchvision.datasets.STL10 train_data = dataset_class( root=old_config.dataset_root, transform=tf2, # also could use tf1 split="train") train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.new_batch_sz, shuffle=True, num_workers=0, drop_last=False) test_data = dataset_class(root=old_config.dataset_root, transform=None, split="test") test_data = TenCropAndFinish(test_data, input_sz=old_config.input_sz, include_rgb=old_config.include_rgb) test_loader = torch.utils.data.DataLoader( test_data, batch_size=config.new_batch_sz, # full batch shuffle=False, num_workers=0, drop_last=False) # Model ---------------------------------------------------------------------- net_features = archs.__dict__[old_config.arch](old_config) if not config.restart: model_path = os.path.join(old_config.out_dir, "best_net.pytorch") net_features.load_state_dict( torch.load(model_path, map_location=lambda storage, loc: storage)) dlen = get_dlen(net_features, train_loader, include_rgb=old_config.include_rgb, penultimate_features=config.penultimate_features) print("dlen: %d" % dlen) assert (config.arch == "SupHead5") net = SupHead5(net_features, dlen=dlen, gt_k=old_config.gt_k) if config.restart: print("restarting from latest net") model_path = os.path.join(config.out_dir, "latest_net.pytorch") net.load_state_dict( torch.load(model_path, map_location=lambda storage, loc: storage)) net.cuda() net = torch.nn.DataParallel(net) opt_trunk = torch.optim.Adam(net.module.trunk.parameters(), lr=config.trunk_lr) opt_head = torch.optim.Adam(net.module.head.parameters(), lr=(config.head_lr)) if config.restart: print("restarting from latest optimiser") optimiser_states = torch.load( os.path.join(config.out_dir, "latest_optimiser.pytorch")) opt_trunk.load_state_dict(optimiser_states["opt_trunk"]) opt_head.load_state_dict(optimiser_states["opt_head"]) else: print("using new optimiser state") criterion = nn.CrossEntropyLoss().cuda() if not config.restart: net.eval() acc = assess_acc_block( net, test_loader, gt_k=old_config.gt_k, include_rgb=old_config.include_rgb, penultimate_features=config.penultimate_features, contiguous_sz=config.contiguous_sz) print("pre: model %d old model %d, acc %f time %s" % (config.model_ind, config.old_model_ind, acc, datetime.now())) sys.stdout.flush() config.epoch_acc.append(acc) if config.restart_new_model_ind: assert (config.restart) config.model_ind = config.new_model_ind # old_model_ind stays same config.out_dir = os.path.join(config.out_root, str(config.model_ind)) print("restarting as model %d" % config.model_ind) if not os.path.exists(config.out_dir): os.makedirs(config.out_dir) # Train ---------------------------------------------------------------------- for e_i in xrange(start_epoch, config.num_epochs): net.train() if e_i in config.lr_schedule: print("e_i %d, multiplying lr for opt trunk and head by %f" % (e_i, config.lr_mult)) opt_trunk = update_lr(opt_trunk, lr_mult=config.lr_mult) opt_head = update_lr(opt_head, lr_mult=config.lr_mult) if not hasattr(config, "lr_changes"): config.lr_changes = [] config.lr_changes.append((e_i, config.lr_mult)) avg_loss = 0. num_batches = len(train_loader) for i, (imgs, targets) in enumerate(train_loader): imgs = sobel_process(imgs.cuda(), old_config.include_rgb) targets = targets.cuda() x_out = net(imgs, penultimate_features=config.penultimate_features) loss = criterion(x_out, targets) avg_loss += float(loss.data) opt_trunk.zero_grad() opt_head.zero_grad() loss.backward() opt_trunk.step() opt_head.step() if (i % 100 == 0) or (e_i == start_epoch): print("batch %d of %d, loss %f, time %s" % (i, num_batches, float(loss.data), datetime.now())) sys.stdout.flush() avg_loss /= num_batches net.eval() acc = assess_acc_block( net, test_loader, gt_k=old_config.gt_k, include_rgb=old_config.include_rgb, penultimate_features=config.penultimate_features, contiguous_sz=config.contiguous_sz) print( "model %d old model %d epoch %d acc %f time %s" % (config.model_ind, config.old_model_ind, e_i, acc, datetime.now())) sys.stdout.flush() is_best = False if acc > max(config.epoch_acc): is_best = True config.epoch_acc.append(acc) config.epoch_loss.append(avg_loss) axarr[0].clear() axarr[0].plot(config.epoch_acc) axarr[0].set_title("Acc") axarr[1].clear() axarr[1].plot(config.epoch_loss) axarr[1].set_title("Loss") fig.canvas.draw_idle() fig.savefig(os.path.join(config.out_dir, "plots.png")) if is_best or (e_i % 10 == 0): net.module.cpu() if is_best: torch.save(net.module.state_dict(), os.path.join(config.out_dir, "best_net.pytorch")) torch.save( { "opt_head": opt_head.state_dict(), "opt_trunk": opt_trunk.state_dict() }, os.path.join(config.out_dir, "best_optimiser.pytorch")) # save model sparingly for this script if e_i % 10 == 0: torch.save(net.module.state_dict(), os.path.join(config.out_dir, "latest_net.pytorch")) torch.save( { "opt_head": opt_head.state_dict(), "opt_trunk": opt_trunk.state_dict() }, os.path.join(config.out_dir, "latest_optimiser.pytorch")) net.module.cuda() config.last_epoch = e_i # for last saved version with open(os.path.join(config.out_dir, "config.pickle"), 'w') as outfile: pickle.dump(config, outfile) with open(os.path.join(config.out_dir, "config.txt"), "w") as text_file: text_file.write("%s" % config)