Exemple #1
0
def get_injection_kernel(fiat_element, unique_indices, dim=1):
    weights = get_injection_weights(fiat_element)[unique_indices].T
    ncdof = weights.shape[0]
    nfdof = weights.shape[1]
    # What if we have multiple nodes in same location (DG)?  Divide by
    # rowsum.
    weights = weights / np.sum(weights, axis=1).reshape(-1, 1)

    all_same = np.allclose(weights, weights[0, 0])

    arglist = [
        ast.Decl("double", ast.Symbol("coarse", (ncdof * dim, ))),
        ast.Decl("double",
                 ast.Symbol("*restrict *restrict fine", ()),
                 qualifiers=["const"])
    ]
    if all_same:
        w_sym = ast.Symbol("weights", ())
        w = [ast.Decl("double", w_sym, weights[0, 0], qualifiers=["const"])]
    else:
        init = ast.ArrayInit(format_array_literal(weights))
        w_sym = ast.Symbol("weights", (ncdof, nfdof))
        w = [ast.Decl("double", w_sym, init, qualifiers=["const"])]

    i = ast.Symbol("i", ())
    j = ast.Symbol("j", ())
    k = ast.Symbol("k", ())
    if all_same:
        assign = ast.Prod(ast.Symbol("fine", (j, k)), w_sym)
    else:
        assign = ast.Prod(ast.Symbol("fine", (j, k)),
                          ast.Symbol("weights", (i, j)))
    assignment = ast.Incr(
        ast.Symbol("coarse", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))), )),
        assign)
    k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)),
                     ast.Less(k, ast.c_sym(dim)), ast.Incr(k, ast.c_sym(1)),
                     ast.Block([assignment], open_scope=True))
    j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)),
                     ast.Less(j, ast.c_sym(nfdof)), ast.Incr(j, ast.c_sym(1)),
                     ast.Block([k_loop], open_scope=True))
    i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)),
                     ast.Less(i, ast.c_sym(ncdof)), ast.Incr(i, ast.c_sym(1)),
                     ast.Block([j_loop], open_scope=True))
    k = ast.FunDecl("void",
                    "injection",
                    arglist,
                    ast.Block(w + [i_loop]),
                    pred=["static", "inline"])

    return op2.Kernel(k, "injection", opts=parameters["coffee"])
def expression_kernel(expr, args):
    """Produce a :class:`pyop2.Kernel` from the processed UFL expression
    expr and the corresponding args."""

    # Empty slot indicating assignment to indexed LHS, so don't do anything
    if type(expr) is Zero:
        return

    fs = args[0].function.function_space()

    d = ast.Symbol("dim")
    ast_expr = _ast(expr)
    body = ast.Block(
        (
            ast.Decl("int", d),
            ast.For(ast.Assign(d, ast.Symbol(0)),
                    ast.Less(d, ast.Symbol(fs.dof_dset.cdim)),
                    ast.Incr(d, ast.Symbol(1)),
                    ast_expr)
        )
    )

    return op2.Kernel(ast.FunDecl("void", "expression",
                                  [arg.arg for arg in args], body),
                      "expression")
Exemple #3
0
def statement_block(tree, parameters):
    statements = [statement(child, parameters) for child in tree.children]
    declares = []
    for expr in parameters.declare[tree]:
        declares.append(
            coffee.Decl(SCALAR_TYPE, _decl_symbol(expr, parameters)))
    return coffee.Block(declares + statements, open_scope=True)
Exemple #4
0
def ker_ind_reduce():
    incr = ast.Incr(ast.Symbol('A', ('i',)), ast.Symbol('B', (0, 0)))
    body = ItSpace().to_for([(0, 2)], ('i',), [incr])
    return ast.FunDecl('void', 'ker_ind_reduce',
                       [ast.Decl('int', 'A', qualifiers=['unsigned'], pointers=['']),
                        ast.Decl('int', 'B', qualifiers=['unsigned'], pointers=['', ''])],
                       ast.Block(body))
Exemple #5
0
def ker_ind_inc():
    return ast.FunDecl(
        'void', 'ker_ind_inc', [
            ast.Decl('int', 'B', qualifiers=['unsigned'], pointers=['', '']),
            ast.Decl('int', 'A', qualifiers=['unsigned'], pointers=[''])
        ],
        ast.Block([ast.Incr(ast.Symbol('B', (0, 0)), ast.Symbol('A', (0, )))]))
Exemple #6
0
def statement_evaluate(leaf, parameters):
    expr = leaf.expression
    if isinstance(expr, gem.ListTensor):
        if parameters.declare[leaf]:
            array_expression = numpy.vectorize(lambda v: expression(v, parameters))
            return coffee.Decl(parameters.scalar_type,
                               _decl_symbol(expr, parameters),
                               coffee.ArrayInit(array_expression(expr.array),
                                                precision=parameters.precision))
        else:
            ops = []
            for multiindex, value in numpy.ndenumerate(expr.array):
                coffee_sym = _coffee_symbol(_ref_symbol(expr, parameters), rank=multiindex)
                ops.append(coffee.Assign(coffee_sym, expression(value, parameters)))
            return coffee.Block(ops, open_scope=False)
    elif isinstance(expr, gem.Constant):
        assert parameters.declare[leaf]
        return coffee.Decl(parameters.scalar_type,
                           _decl_symbol(expr, parameters),
                           coffee.ArrayInit(expr.array, parameters.precision),
                           qualifiers=["static", "const"])
    else:
        code = expression(expr, parameters, top=True)
        if parameters.declare[leaf]:
            return coffee.Decl(parameters.scalar_type, _decl_symbol(expr, parameters), code)
        else:
            return coffee.Assign(_ref_symbol(expr, parameters), code)
Exemple #7
0
def get_prolongation_kernel(fiat_element, unique_indices, dim=1):
    weights = restriction_weights(fiat_element)[unique_indices]
    nfdof = weights.shape[0]
    ncdof = weights.shape[1]
    arglist = [
        ast.Decl("double", ast.Symbol("fine", (nfdof * dim, ))),
        ast.Decl("double *restrict *restrict ",
                 ast.Symbol("coarse", ()),
                 qualifiers=["const"])
    ]
    all_same = np.allclose(weights, weights[0, 0])

    if all_same:
        w_sym = ast.Symbol("weights", ())
        w = [ast.Decl("double", w_sym, weights[0, 0], qualifiers=["const"])]
    else:
        w_sym = ast.Symbol("weights", (nfdof, ncdof))
        init = ast.ArrayInit(format_array_literal(weights))
        w = [ast.Decl("double", w_sym, init, qualifiers=["const"])]
    i = ast.Symbol("i", ())
    j = ast.Symbol("j", ())
    k = ast.Symbol("k", ())
    if all_same:
        assign = ast.Prod(ast.Symbol("coarse", (j, k)), w_sym)
    else:
        assign = ast.Prod(ast.Symbol("coarse", (j, k)),
                          ast.Symbol("weights", (i, j)))

    assignment = ast.Incr(
        ast.Symbol("fine", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))), )),
        assign)
    k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)),
                     ast.Less(k, ast.c_sym(dim)), ast.Incr(k, ast.c_sym(1)),
                     ast.Block([assignment], open_scope=True))
    j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)),
                     ast.Less(j, ast.c_sym(ncdof)), ast.Incr(j, ast.c_sym(1)),
                     ast.Block([k_loop], open_scope=True))
    i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)),
                     ast.Less(i, ast.c_sym(nfdof)), ast.Incr(i, ast.c_sym(1)),
                     ast.Block([j_loop], open_scope=True))
    k = ast.FunDecl("void",
                    "prolongation",
                    arglist,
                    ast.Block(w + [i_loop]),
                    pred=["static", "inline"])

    return op2.Kernel(k, "prolongation", opts=parameters["coffee"])
Exemple #8
0
def ker_write2d():
    return ast.FunDecl(
        'void', 'ker_write2d',
        [ast.Decl('int', 'V', qualifiers=['unsigned'], pointers=[''])],
        ast.Block([
            ast.Assign(ast.Symbol('V', (0, )), 1),
            ast.Assign(ast.Symbol('V', (1, )), 2)
        ]))
Exemple #9
0
    def construct_empty_kernel(self, name):
        """Construct an empty kernel function.

        Kernel will just zero the return buffer and do nothing else.

        :arg name: function name
        :returns: a COFFEE function definition object
        """
        body = coffee.Block([])  # empty block
        return self._construct_kernel_from_body(name, body)
Exemple #10
0
def ker_reduce_ind_read():
    body = ast.Incr('a', ast.Prod(ast.Symbol('V', (0, 'i')), ast.Symbol('B', (0,))))
    body = \
        [ast.Decl('int', 'a', '0')] +\
        ItSpace().to_for([(0, 2)], ('i',), [body]) +\
        [ast.Incr(ast.Symbol('A', (0,)), 'a')]
    return ast.FunDecl('void', 'ker_reduce_ind_read',
                       [ast.Decl('int', 'A', qualifiers=['unsigned'], pointers=['']),
                        ast.Decl('int', 'V', qualifiers=['unsigned'], pointers=['', '']),
                        ast.Decl('int', 'B', qualifiers=['unsigned'], pointers=[''])],
                       ast.Block(body))
Exemple #11
0
    def construct_kernel(self, name, args, body):
        """Construct a COFFEE function declaration with the
        accumulated glue code.

        :arg name: function name
        :arg args: function argument list
        :arg body: function body (:class:`coffee.Block` node)
        :returns: :class:`coffee.FunDecl` object
        """
        assert isinstance(body, coffee.Block)
        body_ = coffee.Block(self.prepare + body.children + self.finalise)
        return coffee.FunDecl("void", name, args, body_, pred=["static", "inline"])
Exemple #12
0
def extruded_top_bottom_facet(cxt_kernel, builder, coordsym, mesh_layer_sym,
                              cell_orientations):
    """Generates a code statement for evaluating exterior top/bottom
    facet integrals.

    :arg cxt_kernel: A :namedtuple:`ContextKernel` containing all relevant
                     integral types and TSFC kernels associated with the
                     form nested in the expression.
    :arg builder: A :class:`KernelBuilder` containing the expression context.
    :arg coordsym: An `ast.Symbol` object representing coordinate arguments
                   for the kernel.
    :arg mesh_layer_sym: An `ast.Symbol` representing the mesh layer.
    :arg cell_orientations: An `ast.Symbol` representing cell orientation
                            information.

    Returns: A COFFEE code statement and updated include_dirs
    """
    exp = cxt_kernel.tensor
    t = builder.temps[exp]
    nlayers = exp.ufl_domain().topological.layers - 1

    incl = []
    body = []
    for splitkernel in cxt_kernel.tsfc_kernels:
        index = splitkernel.indices
        kinfo = splitkernel.kinfo

        # Generate an iterable of coefficients to pass to the subkernel
        # if any are required
        clist = [
            c for ci in kinfo.coefficient_map
            for c in builder.coefficient(exp.coefficients()[ci])
        ]

        if kinfo.oriented:
            clist.insert(0, cell_orientations)

        incl.extend(kinfo.kernel._include_dirs)
        tensor = eigen_tensor(exp, t, index)
        body.append(ast.FunCall(kinfo.kernel.name, tensor, coordsym, *clist))

    if cxt_kernel.original_integral_type == "exterior_facet_bottom":
        layer = 0
    else:
        layer = nlayers - 1

    stmt = ast.If(ast.Eq(mesh_layer_sym, layer),
                  [ast.Block(body, open_scope=True)])

    return stmt, incl
Exemple #13
0
def _generate_element_tensor(integrals, sets, optimise_parameters, parameters):
    "Construct quadrature code for element tensors."

    # Prefetch formats to speed up code generation.
    f_comment    = format["comment"]
    f_ip         = format["integration points"]
    f_I          = format["ip constant"]
    f_loop       = format["generate loop"]
    f_ip_coords  = format["generate ip coordinates"]
    f_coords     = format["coordinate_dofs"]
    f_double     = format["float declaration"]
    f_decl       = format["declaration"]
    f_X          = format["ip coordinates"]
    f_C          = format["conditional"]


    # Initialise return values.
    tensor_ops_count = 0

    ffc_assert(1 == len(integrals), "This function is not capable of handling multiple integrals.")

    # We receive a dictionary {num_points: form,}.
    # Loop points and forms.
    for points, terms, functions, ip_consts, coordinate, conditionals in integrals:

        nest_ir = []
        ip_ir = []
        num_ops = 0

        # Generate code to compute coordinates if used.
        if coordinate:
            raise RuntimeError("Don't know how to compute coordinates")
            # Left in place for posterity
            name, gdim, ip, r = coordinate
            element_code += ["", f_comment("Declare array to hold physical coordinate of quadrature point.")]
            element_code += [f_decl(f_double, f_X(points, gdim))]
            ops, coord_code = f_ip_coords(gdim, points, name, ip, r)
            ip_code += ["", f_comment("Compute physical coordinate of quadrature point, operations: %d." % ops)]
            ip_code += [coord_code]
            num_ops += ops
            # Update used psi tables and transformation set.
            sets[1].add(name)
            sets[3].add(f_coords(r))

        # Generate code to compute function values.
        if functions:
            const_func_code, func_code, ops = _generate_functions(functions, sets)
            nest_ir += const_func_code
            ip_ir += func_code
            num_ops += ops

        # Generate code to compute conditionals (might depend on coordinates
        # and function values so put here).
        # TODO: Some conditionals might only depend on geometry so they
        # should be moved outside if possible.
        if conditionals:
            ip_ir.append(pyop2.Decl(f_double, c_sym(f_C(len(conditionals)))))
            # Sort conditionals (need to in case of nested conditionals).
            reversed_conds = dict([(n, (o, e)) for e, (t, o, n) in conditionals.items()])
            for num in range(len(conditionals)):
                name = format["conditional"](num)
                ops, expr = reversed_conds[num]
                ip_ir.append(pyop2.Assign(c_sym(name), visit_rhs(expr)))
                num_ops += ops

        # Generate code for ip constant declarations.
        # TODO: this code should be removable as only executed when ffc's optimisations are on
        ip_const_ops, ip_const_code = generate_aux_constants(ip_consts, f_I,\
                                        format["assign"], True)
        if len(ip_const_code) > 0:
            raise RuntimeError("IP Const code not supported")
        num_ops += ip_const_ops

        # Generate code to evaluate the element tensor.
        code, ops = _generate_integral_ir(points, terms, sets, optimise_parameters, parameters)
        num_ops += ops
        tensor_ops_count += num_ops*points
        ip_ir += code

        # Loop code over all IPs.
        # @@@: for (ip ...) { A[0][0] += ... }
        if points > 1:
            it_var = pyop2.Symbol(f_ip, ())
            nest_ir += [pyop2.For(pyop2.Decl("int", it_var, c_sym(0)),
                                  pyop2.Less(it_var, c_sym(points)),
                                  pyop2.Incr(it_var, c_sym(1)),
                                  pyop2.Block(ip_ir, open_scope=True))]
        else:
            nest_ir += ip_ir

    return (nest_ir, tensor_ops_count)
Exemple #14
0
def compile_c_kernel(expression, to_pts, to_element, fs, coords):
    """Produce a :class:`PyOP2.Kernel` from the c expression provided."""

    coords_space = coords.function_space()
    coords_element = coords_space.fiat_element

    names = {v[0] for v in expression._user_args}

    X = coords_element.tabulate(0, to_pts).values()[0]

    # Produce C array notation of X.
    X_str = "{{"+"},\n{".join([",".join(map(str, x)) for x in X.T])+"}}"

    A = utils.unique_name("A", names)
    X = utils.unique_name("X", names)
    x_ = utils.unique_name("x_", names)
    k = utils.unique_name("k", names)
    d = utils.unique_name("d", names)
    i_ = utils.unique_name("i", names)
    # x is a reserved name.
    x = "x"
    if "x" in names:
        raise ValueError("cannot use 'x' as a user-defined Expression variable")
    ass_exp = [ast.Assign(ast.Symbol(A, (k,), ((len(expression.code), i),)),
                          ast.FlatBlock("%s" % code))
               for i, code in enumerate(expression.code)]
    vals = {
        "X": X,
        "x": x,
        "x_": x_,
        "k": k,
        "d": d,
        "i": i_,
        "x_array": X_str,
        "dim": coords_space.dim,
        "xndof": coords_element.space_dimension(),
        # FS will always either be a functionspace or
        # vectorfunctionspace, so just accessing dim here is safe
        # (we don't need to go through ufl_element.value_shape())
        "nfdof": to_element.space_dimension() * numpy.prod(fs.dim, dtype=int),
        "ndof": to_element.space_dimension(),
        "assign_dim": numpy.prod(expression.value_shape(), dtype=int)
    }
    init = ast.FlatBlock("""
const double %(X)s[%(ndof)d][%(xndof)d] = %(x_array)s;

double %(x)s[%(dim)d];
const double pi = 3.141592653589793;

""" % vals)
    block = ast.FlatBlock("""
for (unsigned int %(d)s=0; %(d)s < %(dim)d; %(d)s++) {
  %(x)s[%(d)s] = 0;
  for (unsigned int %(i)s=0; %(i)s < %(xndof)d; %(i)s++) {
        %(x)s[%(d)s] += %(X)s[%(k)s][%(i)s] * %(x_)s[%(i)s][%(d)s];
  };
};

""" % vals)
    loop = ast.c_for(k, "%(ndof)d" % vals, ast.Block([block] + ass_exp,
                                                     open_scope=True))
    user_args = []
    user_init = []
    for _, arg in expression._user_args:
        if arg.shape == (1, ):
            user_args.append(ast.Decl("double *", "%s_" % arg.name))
            user_init.append(ast.FlatBlock("const double %s = *%s_;" %
                                           (arg.name, arg.name)))
        else:
            user_args.append(ast.Decl("double *", arg.name))
    kernel_code = ast.FunDecl("void", "expression_kernel",
                              [ast.Decl("double", ast.Symbol(A, (int("%(nfdof)d" % vals),))),
                               ast.Decl("double**", x_)] + user_args,
                              ast.Block(user_init + [init, loop],
                                        open_scope=False))
    coefficients = [coords]
    for _, arg in expression._user_args:
        coefficients.append(GlobalWrapper(arg))
    return op2.Kernel(kernel_code, kernel_code.name), False, tuple(coefficients)
Exemple #15
0
def ker_init():
    return ast.FunDecl('void', 'ker_init',
                       [ast.Decl('int', 'B', qualifiers=['unsigned'], pointers=[''])],
                       ast.Block([ast.Assign(ast.Symbol('B', (0,)), 0)]))
Exemple #16
0
def tensor_assembly_calls(builder):
    """Generates a block of statements for assembling the local
    finite element tensors.

    :arg builder: The :class:`LocalKernelBuilder` containing
                  all relevant expression information and
                  assembly calls.
    """
    statements = [ast.FlatBlock("/* Assemble local tensors */\n")]

    # Cell integrals are straightforward. Just splat them out.
    statements.extend(builder.assembly_calls["cell"])

    if builder.needs_cell_facets:
        # The for-loop will have the general structure:
        #
        #    FOR (facet=0; facet<num_facets; facet++):
        #        IF (facet is interior):
        #            *interior calls
        #        ELSE IF (facet is exterior):
        #            *exterior calls
        #
        # If only interior (exterior) facets are present,
        # then only a single IF-statement checking for interior
        # (exterior) facets will be present within the loop. The
        # cell facets are labelled `1` for interior, and `0` for
        # exterior.

        statements.append(ast.FlatBlock("/* Loop over cell facets */\n"))
        int_calls = list(
            chain(*[
                builder.assembly_calls[it_type]
                for it_type in ("interior_facet", "interior_facet_vert")
            ]))
        ext_calls = list(
            chain(*[
                builder.assembly_calls[it_type]
                for it_type in ("exterior_facet", "exterior_facet_vert")
            ]))

        # Compute the number of facets to loop over
        domain = builder.expression.ufl_domain()
        if domain.cell_set._extruded:
            num_facets = domain.ufl_cell()._cells[0].num_facets()
        else:
            num_facets = domain.ufl_cell().num_facets()

        if_ext = ast.Eq(
            ast.Symbol(builder.cell_facet_sym, rank=(builder.it_sym, )), 0)
        if_int = ast.Eq(
            ast.Symbol(builder.cell_facet_sym, rank=(builder.it_sym, )), 1)
        body = []
        if ext_calls:
            body.append(
                ast.If(if_ext, (ast.Block(ext_calls, open_scope=True), )))
        if int_calls:
            body.append(
                ast.If(if_int, (ast.Block(int_calls, open_scope=True), )))

        statements.append(
            ast.For(ast.Decl("unsigned int", builder.it_sym, init=0),
                    ast.Less(builder.it_sym, num_facets),
                    ast.Incr(builder.it_sym, 1), body))

    if builder.needs_mesh_layers:
        # In the presence of interior horizontal facet calls, an
        # IF-ELIF-ELSE block is generated using the mesh levels
        # as conditions for which calls are needed:
        #
        #    IF (layer == bottom_layer):
        #        *bottom calls
        #    ELSE IF (layer == top_layer):
        #        *top calls
        #    ELSE:
        #        *top calls
        #        *bottom calls
        #
        # Any extruded top or bottom calls for extruded facets are
        # included within the appropriate mesh-level IF-blocks. If
        # no interior horizontal facet calls are present, then
        # standard IF-blocks are generated for exterior top/bottom
        # facet calls when appropriate:
        #
        #    IF (layer == bottom_layer):
        #        *bottom calls
        #
        #    IF (layer == top_layer):
        #        *top calls
        #
        # The mesh level is an integer provided as a macro kernel
        # argument.

        # FIXME: No variable layers assumption
        statements.append(ast.FlatBlock("/* Mesh levels: */\n"))
        num_layers = builder.expression.ufl_domain().topological.layers - 1
        int_top = builder.assembly_calls["interior_facet_horiz_top"]
        int_btm = builder.assembly_calls["interior_facet_horiz_bottom"]
        ext_top = builder.assembly_calls["exterior_facet_top"]
        ext_btm = builder.assembly_calls["exterior_facet_bottom"]

        bottom = ast.Block(int_top + ext_btm, open_scope=True)
        top = ast.Block(int_btm + ext_top, open_scope=True)
        rest = ast.Block(int_btm + int_top, open_scope=True)
        statements.append(
            ast.If(ast.Eq(builder.mesh_layer_sym, 0),
                   (bottom,
                    ast.If(ast.Eq(builder.mesh_layer_sym, num_layers - 1),
                           (top, rest)))))

    return statements
Exemple #17
0
def build_hard_fusion_kernel(base_loop, fuse_loop, fusion_map, loop_chain_index):
    """
    Build AST and :class:`Kernel` for two loops suitable to hard fusion.

    The AST consists of three functions: fusion, base, fuse. base and fuse
    are respectively the ``base_loop`` and the ``fuse_loop`` kernels, whereas
    fusion is the orchestrator that invokes, for each ``base_loop`` iteration,
    base and, if still to be executed, fuse.

    The orchestrator has the following structure: ::

        fusion (buffer, ..., executed):
            base (buffer, ...)
            for i = 0 to arity:
                if not executed[i]:
                    additional pointer staging required by kernel2
                    fuse (sub_buffer, ...)
                    insertion into buffer

    The executed array tracks whether the i-th iteration (out of /arity/)
    adjacent to the main kernel1 iteration has been executed.
    """

    finder = Find((ast.FunDecl, ast.PreprocessNode))

    base = base_loop.kernel
    base_ast = dcopy(base._ast)
    base_info = finder.visit(base_ast)
    base_headers = base_info[ast.PreprocessNode]
    base_fundecl = base_info[ast.FunDecl]
    assert len(base_fundecl) == 1
    base_fundecl = base_fundecl[0]

    fuse = fuse_loop.kernel
    fuse_ast = dcopy(fuse._ast)
    fuse_info = finder.visit(fuse_ast)
    fuse_headers = fuse_info[ast.PreprocessNode]
    fuse_fundecl = fuse_info[ast.FunDecl]
    assert len(fuse_fundecl) == 1
    fuse_fundecl = fuse_fundecl[0]

    # Create /fusion/ arguments and signature
    body = ast.Block([])
    fusion_name = '%s_%s' % (base_fundecl.name, fuse_fundecl.name)
    fusion_args = dcopy(base_fundecl.args + fuse_fundecl.args)
    fusion_fundecl = ast.FunDecl(base_fundecl.ret, fusion_name, fusion_args, body)

    # Make sure kernel and variable names are unique
    base_fundecl.name = "%s_base" % base_fundecl.name
    fuse_fundecl.name = "%s_fuse" % fuse_fundecl.name
    for i, decl in enumerate(fusion_args):
        decl.sym.symbol += '_%d' % i

    # Filter out duplicate arguments, and append extra arguments to the fundecl
    binding = WeakFilter().kernel_args([base_loop, fuse_loop], fusion_fundecl)
    fusion_args += [ast.Decl('int*', 'executed'),
                    ast.Decl('int*', 'fused_iters'),
                    ast.Decl('int', 'i')]

    # Which args are actually used in /fuse/, but not in /base/ ? The gather for
    # such arguments is moved to /fusion/, to avoid usless memory LOADs
    base_dats = set(a.data for a in base_loop.args)
    fuse_dats = set(a.data for a in fuse_loop.args)
    unshared = OrderedDict()
    for arg, decl in binding.items():
        if arg.data in fuse_dats - base_dats:
            unshared.setdefault(decl, arg)

    # Track position of Args that need a postponed gather
    # Can't track Args themselves as they change across different parloops
    fargs = {fusion_args.index(i): ('postponed', False) for i in unshared.keys()}
    fargs.update({len(set(binding.values())): ('onlymap', True)})

    # Add maps for arguments that need a postponed gather
    for decl, arg in unshared.items():
        decl_pos = fusion_args.index(decl)
        fusion_args[decl_pos].sym.symbol = arg.c_arg_name()
        if arg._is_indirect:
            fusion_args[decl_pos].sym.rank = ()
            fusion_args.insert(decl_pos + 1, ast.Decl('int*', arg.c_map_name(0, 0)))

    # Append the invocation of /base/; then, proceed with the invocation
    # of the /fuse/ kernels
    base_funcall_syms = [binding[a].sym.symbol for a in base_loop.args]
    body.children.append(ast.FunCall(base_fundecl.name, *base_funcall_syms))

    for idx in range(fusion_map.arity):

        fused_iter = ast.Assign('i', ast.Symbol('fused_iters', (idx,)))
        fuse_funcall = ast.FunCall(fuse_fundecl.name)
        if_cond = ast.Not(ast.Symbol('executed', ('i',)))
        if_update = ast.Assign(ast.Symbol('executed', ('i',)), 1)
        if_body = ast.Block([fuse_funcall, if_update], open_scope=True)
        if_exec = ast.If(if_cond, [if_body])
        body.children.extend([ast.FlatBlock('\n'), fused_iter, if_exec])

        # Modify the /fuse/ kernel
        # This is to take into account that many arguments are shared with
        # /base/, so they will only staged once for /base/. This requires
        # tweaking the way the arguments are declared and accessed in /fuse/.
        # For example, the shared incremented array (called /buffer/ in
        # the pseudocode in the comment above) now needs to take offsets
        # to be sure the locations that /base/ is supposed to increment are
        # actually accessed. The same concept apply to indirect arguments.
        init = lambda v: '{%s}' % ', '.join([str(j) for j in v])
        for i, fuse_loop_arg in enumerate(fuse_loop.args):
            fuse_kernel_arg = binding[fuse_loop_arg]

            buffer_name = '%s_vec' % fuse_kernel_arg.sym.symbol
            fuse_funcall_sym = ast.Symbol(buffer_name)

            # What kind of temporaries do we need ?
            if fuse_loop_arg.access == INC:
                op, lvalue, rvalue = ast.Incr, fuse_kernel_arg.sym.symbol, buffer_name
                stager = lambda b, l: b.children.extend(l)
                indexer = lambda indices: [(k, j) for j, k in enumerate(indices)]
                pointers = []
            elif fuse_loop_arg.access == READ:
                op, lvalue, rvalue = ast.Assign, buffer_name, fuse_kernel_arg.sym.symbol
                stager = lambda b, l: [b.children.insert(0, j) for j in reversed(l)]
                indexer = lambda indices: [(j, k) for j, k in enumerate(indices)]
                pointers = list(fuse_kernel_arg.pointers)

            # Now gonna handle arguments depending on their type and rank ...

            if fuse_loop_arg._is_global:
                # ... Handle global arguments. These can be dropped in the
                # kernel without any particular fiddling
                fuse_funcall_sym = ast.Symbol(fuse_kernel_arg.sym.symbol)

            elif fuse_kernel_arg in unshared:
                # ... Handle arguments that appear only in /fuse/
                staging = unshared[fuse_kernel_arg].c_vec_init(False).split('\n')
                rvalues = [ast.FlatBlock(j.split('=')[1]) for j in staging]
                lvalues = [ast.Symbol(buffer_name, (j,)) for j in range(len(staging))]
                staging = [ast.Assign(j, k) for j, k in zip(lvalues, rvalues)]

                # Set up the temporary
                buffer_symbol = ast.Symbol(buffer_name, (len(staging),))
                buffer_decl = ast.Decl(fuse_kernel_arg.typ, buffer_symbol,
                                       qualifiers=fuse_kernel_arg.qual,
                                       pointers=list(pointers))

                # Update the if-then AST body
                stager(if_exec.children[0], staging)
                if_exec.children[0].children.insert(0, buffer_decl)

            elif fuse_loop_arg._is_mat:
                # ... Handle Mats
                staging = []
                for b in fused_inc_arg._block_shape:
                    for rc in b:
                        lvalue = ast.Symbol(lvalue, (idx, idx),
                                            ((rc[0], 'j'), (rc[1], 'k')))
                        rvalue = ast.Symbol(rvalue, ('j', 'k'))
                        staging = ItSpace(mode=0).to_for([(0, rc[0]), (0, rc[1])],
                                                         ('j', 'k'),
                                                         [op(lvalue, rvalue)])[:1]

                # Set up the temporary
                buffer_symbol = ast.Symbol(buffer_name, (fuse_kernel_arg.sym.rank,))
                buffer_init = ast.ArrayInit(init([init([0.0])]))
                buffer_decl = ast.Decl(fuse_kernel_arg.typ, buffer_symbol, buffer_init,
                                       qualifiers=fuse_kernel_arg.qual, pointers=pointers)

                # Update the if-then AST body
                stager(if_exec.children[0], staging)
                if_exec.children[0].children.insert(0, buffer_decl)

            elif fuse_loop_arg._is_indirect:
                cdim = fuse_loop_arg.data.cdim

                if cdim == 1 and fuse_kernel_arg.sym.rank:
                    # [Special case]
                    # ... Handle rank 1 indirect arguments that appear in both
                    # /base/ and /fuse/: just point into the right location
                    rank = (idx,) if fusion_map.arity > 1 else ()
                    fuse_funcall_sym = ast.Symbol(fuse_kernel_arg.sym.symbol, rank)

                else:
                    # ... Handle indirect arguments. At the C level, these arguments
                    # are of pointer type, so simple pointer arithmetic is used
                    # to ensure the kernel accesses are to the correct locations
                    fuse_arity = fuse_loop_arg.map.arity
                    base_arity = fuse_arity*fusion_map.arity
                    size = fuse_arity*cdim

                    # Set the proper storage layout before invoking /fuse/
                    ofs_vals = [[base_arity*j + k for k in range(fuse_arity)]
                                for j in range(cdim)]
                    ofs_vals = [[fuse_arity*j + k for k in flatten(ofs_vals)]
                                for j in range(fusion_map.arity)]
                    ofs_vals = list(flatten(ofs_vals))
                    indices = [ofs_vals[idx*size + j] for j in range(size)]

                    staging = [op(ast.Symbol(lvalue, (j,)), ast.Symbol(rvalue, (k,)))
                               for j, k in indexer(indices)]

                    # Set up the temporary
                    buffer_symbol = ast.Symbol(buffer_name, (size,))
                    if fuse_loop_arg.access == INC:
                        buffer_init = ast.ArrayInit(init([0.0]))
                    else:
                        buffer_init = ast.EmptyStatement()
                        pointers.pop()
                    buffer_decl = ast.Decl(fuse_kernel_arg.typ, buffer_symbol, buffer_init,
                                           qualifiers=fuse_kernel_arg.qual,
                                           pointers=pointers)

                    # Update the if-then AST body
                    stager(if_exec.children[0], staging)
                    if_exec.children[0].children.insert(0, buffer_decl)

            else:
                # Nothing special to do for direct arguments
                pass

            # Finally update the /fuse/ funcall
            fuse_funcall.children.append(fuse_funcall_sym)

    fused_headers = set([str(h) for h in base_headers + fuse_headers])
    fused_ast = ast.Root([ast.PreprocessNode(h) for h in fused_headers] +
                         [base_fundecl, fuse_fundecl, fusion_fundecl])

    return Kernel([base, fuse], fused_ast, loop_chain_index), fargs
Exemple #18
0
def get_restriction_kernel(fiat_element,
                           unique_indices,
                           dim=1,
                           no_weights=False):
    weights = get_restriction_weights(fiat_element)[unique_indices].T
    ncdof = weights.shape[0]
    nfdof = weights.shape[1]
    arglist = [
        ast.Decl("double", ast.Symbol("coarse", (ncdof * dim, ))),
        ast.Decl("double",
                 ast.Symbol("*restrict *restrict fine", ()),
                 qualifiers=["const"])
    ]
    if not no_weights:
        arglist.append(
            ast.Decl("double",
                     ast.Symbol("*restrict *restrict count_weights", ()),
                     qualifiers=["const"]))

    all_ones = np.allclose(weights, 1.0)

    if all_ones:
        w = []
    else:
        w_sym = ast.Symbol("weights", (ncdof, nfdof))
        init = ast.ArrayInit(format_array_literal(weights))
        w = [ast.Decl("double", w_sym, init, qualifiers=["const"])]

    i = ast.Symbol("i", ())
    j = ast.Symbol("j", ())
    k = ast.Symbol("k", ())
    fine = ast.Symbol("fine", (j, k))
    if no_weights:
        if all_ones:
            assign = fine
        else:
            assign = ast.Prod(fine, ast.Symbol("weights", (i, j)))
    else:
        if all_ones:
            assign = ast.Prod(fine, ast.Symbol("count_weights", (j, 0)))
        else:
            assign = ast.Prod(
                fine,
                ast.Prod(ast.Symbol("weights", (i, j)),
                         ast.Symbol("count_weights", (j, 0))))
    assignment = ast.Incr(
        ast.Symbol("coarse", (ast.Sum(k, ast.Prod(i, ast.c_sym(dim))), )),
        assign)
    k_loop = ast.For(ast.Decl("int", k, ast.c_sym(0)),
                     ast.Less(k, ast.c_sym(dim)), ast.Incr(k, ast.c_sym(1)),
                     ast.Block([assignment], open_scope=True))
    j_loop = ast.For(ast.Decl("int", j, ast.c_sym(0)),
                     ast.Less(j, ast.c_sym(nfdof)), ast.Incr(j, ast.c_sym(1)),
                     ast.Block([k_loop], open_scope=True))
    i_loop = ast.For(ast.Decl("int", i, ast.c_sym(0)),
                     ast.Less(i, ast.c_sym(ncdof)), ast.Incr(i, ast.c_sym(1)),
                     ast.Block([j_loop], open_scope=True))
    k = ast.FunDecl("void",
                    "restriction",
                    arglist,
                    ast.Block(w + [i_loop]),
                    pred=["static", "inline"])

    return op2.Kernel(k, "restriction", opts=parameters["coffee"])
Exemple #19
0
def generate_kernel_ast(builder, statements, declared_temps):
    """Glues together the complete AST for the Slate expression
    contained in the :class:`LocalKernelBuilder`.

    :arg builder: The :class:`LocalKernelBuilder` containing
                  all relevant expression information.
    :arg statements: A list of COFFEE objects containing all
                     assembly calls and temporary declarations.
    :arg declared_temps: A `dict` containing all previously
                         declared temporaries.

    Return: A `KernelInfo` object describing the complete AST.
    """
    slate_expr = builder.expression
    if slate_expr.rank == 0:
        # Scalars are treated as 1x1 MatrixBase objects
        shape = (1, )
    else:
        shape = slate_expr.shape

    # Now we create the result statement by declaring its eigen type and
    # using Eigen::Map to move between Eigen and C data structs.
    statements.append(ast.FlatBlock("/* Map eigen tensor into C struct */\n"))
    result_sym = ast.Symbol("T%d" % len(declared_temps))
    result_data_sym = ast.Symbol("A%d" % len(declared_temps))
    result_type = "Eigen::Map<%s >" % eigen_matrixbase_type(shape)
    result = ast.Decl(SCALAR_TYPE, ast.Symbol(result_data_sym, shape))
    result_statement = ast.FlatBlock(
        "%s %s((%s *)%s);\n" %
        (result_type, result_sym, SCALAR_TYPE, result_data_sym))
    statements.append(result_statement)

    # Generate the complete c++ string performing the linear algebra operations
    # on Eigen matrices/vectors
    statements.append(ast.FlatBlock("/* Linear algebra expression */\n"))
    cpp_string = ast.FlatBlock(
        metaphrase_slate_to_cpp(slate_expr, declared_temps))
    statements.append(ast.Incr(result_sym, cpp_string))

    # Generate arguments for the macro kernel
    args = [result, ast.Decl("%s **" % SCALAR_TYPE, builder.coord_sym)]

    # Orientation information
    if builder.oriented:
        args.append(ast.Decl("int **", builder.cell_orientations_sym))

    # Coefficient information
    expr_coeffs = slate_expr.coefficients()
    for c in expr_coeffs:
        if isinstance(c, Constant):
            ctype = "%s *" % SCALAR_TYPE
        else:
            ctype = "%s **" % SCALAR_TYPE
        args.extend([ast.Decl(ctype, csym) for csym in builder.coefficient(c)])

    # Facet information
    if builder.needs_cell_facets:
        args.append(
            ast.Decl("%s *" % as_cstr(cell_to_facets_dtype),
                     builder.cell_facet_sym))

    # NOTE: We need to be careful about the ordering here. Mesh layers are
    # added as the final argument to the kernel.
    if builder.needs_mesh_layers:
        args.append(ast.Decl("int", builder.mesh_layer_sym))

    # Macro kernel
    macro_kernel_name = "compile_slate"
    stmts = ast.Block(statements)
    macro_kernel = ast.FunDecl("void",
                               macro_kernel_name,
                               args,
                               stmts,
                               pred=["static", "inline"])

    # Construct the final ast
    kernel_ast = ast.Node(builder.templated_subkernels + [macro_kernel])

    # Now we wrap up the kernel ast as a PyOP2 kernel and include the
    # Eigen header files
    include_dirs = builder.include_dirs
    include_dirs.extend(["%s/include/eigen3/" % d for d in PETSC_DIR])
    op2kernel = op2.Kernel(
        kernel_ast,
        macro_kernel_name,
        cpp=True,
        include_dirs=include_dirs,
        headers=['#include <Eigen/Dense>', '#define restrict __restrict'])

    # Send back a "TSFC-like" SplitKernel object with an
    # index and KernelInfo
    kinfo = KernelInfo(kernel=op2kernel,
                       integral_type=builder.integral_type,
                       oriented=builder.oriented,
                       subdomain_id="otherwise",
                       domain_number=0,
                       coefficient_map=tuple(range(len(expr_coeffs))),
                       needs_cell_facets=builder.needs_cell_facets,
                       pass_layer_arg=builder.needs_mesh_layers)

    return kinfo
Exemple #20
0
def compile_expression(slate_expr, tsfc_parameters=None):
    """Takes a SLATE expression `slate_expr` and returns the appropriate
    :class:`firedrake.op2.Kernel` object representing the SLATE expression.

    :arg slate_expr: a :class:'TensorBase' expression.
    :arg tsfc_parameters: an optional `dict` of form compiler parameters to
                          be passed onto TSFC during the compilation of ufl forms.
    """
    if not isinstance(slate_expr, TensorBase):
        raise ValueError(
            "Expecting a `slate.TensorBase` expression, not a %r" % slate_expr)

    # TODO: Get PyOP2 to write into mixed dats
    if any(len(a.function_space()) > 1 for a in slate_expr.arguments()):
        raise NotImplementedError("Compiling mixed slate expressions")

    # Initialize shape and statements list
    shape = slate_expr.shape
    statements = []

    # Create a builder for the SLATE expression
    builder = KernelBuilder(expression=slate_expr,
                            tsfc_parameters=tsfc_parameters)

    # Initialize coordinate and facet symbols
    coordsym = ast.Symbol("coords")
    coords = None
    cellfacetsym = ast.Symbol("cell_facets")
    inc = []

    # Now we construct the list of statements to provide to the builder
    context_temps = builder.temps.copy()
    for exp, t in context_temps.items():
        statements.append(ast.Decl(eigen_matrixbase_type(exp.shape), t))
        statements.append(ast.FlatBlock("%s.setZero();\n" % t))

        for splitkernel in builder.kernel_exprs[exp]:
            clist = []
            index = splitkernel.indices
            kinfo = splitkernel.kinfo
            integral_type = kinfo.integral_type

            if integral_type not in [
                    "cell", "interior_facet", "exterior_facet"
            ]:
                raise NotImplementedError(
                    "Integral type %s not currently supported." %
                    integral_type)

            coordinates = exp.ufl_domain().coordinates
            if coords is not None:
                assert coordinates == coords
            else:
                coords = coordinates

            for cindex in kinfo.coefficient_map:
                c = exp.coefficients()[cindex]
                # Handles both mixed and non-mixed coefficient cases
                clist.extend(builder.extract_coefficient(c))

            inc.extend(kinfo.kernel._include_dirs)

            tensor = eigen_tensor(exp, t, index)

            if integral_type in ["interior_facet", "exterior_facet"]:
                builder.require_cell_facets()
                itsym = ast.Symbol("i0")
                clist.append(ast.FlatBlock("&%s" % itsym))
                loop_body = []
                nfacet = exp.ufl_domain().ufl_cell().num_facets()

                if integral_type == "exterior_facet":
                    checker = 1
                else:
                    checker = 0
                loop_body.append(
                    ast.If(
                        ast.Eq(ast.Symbol(cellfacetsym, rank=(itsym, )),
                               checker), [
                                   ast.Block([
                                       ast.FunCall(kinfo.kernel.name, tensor,
                                                   coordsym, *clist)
                                   ],
                                             open_scope=True)
                               ]))
                loop = ast.For(ast.Decl("unsigned int", itsym, init=0),
                               ast.Less(itsym, nfacet), ast.Incr(itsym, 1),
                               loop_body)
                statements.append(loop)
            else:
                statements.append(
                    ast.FunCall(kinfo.kernel.name, tensor, coordsym, *clist))

    # Now we handle any terms that require auxiliary data (if any)
    if bool(builder.aux_exprs):
        aux_temps, aux_statements = auxiliary_information(builder)
        context_temps.update(aux_temps)
        statements.extend(aux_statements)

    result_sym = ast.Symbol("T%d" % len(builder.temps))
    result_data_sym = ast.Symbol("A%d" % len(builder.temps))
    result_type = "Eigen::Map<%s >" % eigen_matrixbase_type(shape)
    result = ast.Decl(SCALAR_TYPE, ast.Symbol(result_data_sym, shape))
    result_statement = ast.FlatBlock(
        "%s %s((%s *)%s);\n" %
        (result_type, result_sym, SCALAR_TYPE, result_data_sym))
    statements.append(result_statement)

    cpp_string = ast.FlatBlock(
        metaphrase_slate_to_cpp(slate_expr, context_temps))
    statements.append(ast.Assign(result_sym, cpp_string))

    # Generate arguments for the macro kernel
    args = [result, ast.Decl("%s **" % SCALAR_TYPE, coordsym)]
    for c in slate_expr.coefficients():
        if isinstance(c, Constant):
            ctype = "%s *" % SCALAR_TYPE
        else:
            ctype = "%s **" % SCALAR_TYPE
        args.extend([
            ast.Decl(ctype, sym_c) for sym_c in builder.extract_coefficient(c)
        ])

    if builder.needs_cell_facets:
        args.append(ast.Decl("char *", cellfacetsym))

    macro_kernel_name = "compile_slate"
    kernel_ast, oriented = builder.construct_ast(
        name=macro_kernel_name, args=args, statements=ast.Block(statements))

    inc.extend(["%s/include/eigen3/" % d for d in PETSC_DIR])
    op2kernel = op2.Kernel(
        kernel_ast,
        macro_kernel_name,
        cpp=True,
        include_dirs=inc,
        headers=['#include <Eigen/Dense>', '#define restrict __restrict'])

    assert len(slate_expr.ufl_domains()) == 1
    kinfo = KernelInfo(kernel=op2kernel,
                       integral_type="cell",
                       oriented=oriented,
                       subdomain_id="otherwise",
                       domain_number=0,
                       coefficient_map=range(len(slate_expr.coefficients())),
                       needs_cell_facets=builder.needs_cell_facets)
    idx = tuple([0] * slate_expr.rank)

    return (SplitKernel(idx, kinfo), )
Exemple #21
0
def compile_c_kernel(expression, to_pts, to_element, fs, coords):
    """Produce a :class:`PyOP2.Kernel` from the c expression provided."""

    coords_space = coords.function_space()
    coords_element = create_element(coords_space.ufl_element(),
                                    vector_is_mixed=False)

    names = {v[0] for v in expression._user_args}

    X = list(coords_element.tabulate(0, to_pts).values())[0]

    # Produce C array notation of X.
    X_str = "{{" + "},\n{".join([",".join(map(str, x)) for x in X.T]) + "}}"

    A = utils.unique_name("A", names)
    X = utils.unique_name("X", names)
    x_ = utils.unique_name("x_", names)
    k = utils.unique_name("k", names)
    d = utils.unique_name("d", names)
    i_ = utils.unique_name("i", names)
    # x is a reserved name.
    x = "x"
    if "x" in names:
        raise ValueError(
            "cannot use 'x' as a user-defined Expression variable")
    ass_exp = [
        ast.Assign(ast.Symbol(A, (k, ), ((len(expression.code), i), )),
                   ast.FlatBlock("%s" % code))
        for i, code in enumerate(expression.code)
    ]

    dim = coords_space.value_size
    ndof = to_element.space_dimension()
    xndof = coords_element.space_dimension()
    nfdof = to_element.space_dimension() * numpy.prod(fs.value_size, dtype=int)

    init_X = ast.Decl(typ="double",
                      sym=ast.Symbol(X, rank=(ndof, xndof)),
                      qualifiers=["const"],
                      init=X_str)
    init_x = ast.Decl(typ="double",
                      sym=ast.Symbol(x, rank=(coords_space.value_size, )))
    init_pi = ast.Decl(typ="double",
                       sym="pi",
                       qualifiers=["const"],
                       init="3.141592653589793")
    init = ast.Block([init_X, init_x, init_pi])
    incr_x = ast.Incr(
        ast.Symbol(x, rank=(d, )),
        ast.Prod(ast.Symbol(X, rank=(k, i_)),
                 ast.Symbol(x_, rank=(ast.Sum(ast.Prod(i_, dim), d), ))))
    assign_x = ast.Assign(ast.Symbol(x, rank=(d, )), 0)
    loop_x = ast.For(init=ast.Decl("unsigned int", i_, 0),
                     cond=ast.Less(i_, xndof),
                     incr=ast.Incr(i_, 1),
                     body=[incr_x])

    block = ast.For(init=ast.Decl("unsigned int", d, 0),
                    cond=ast.Less(d, dim),
                    incr=ast.Incr(d, 1),
                    body=[assign_x, loop_x])
    loop = ast.c_for(k, ndof, ast.Block([block] + ass_exp, open_scope=True))
    user_args = []
    user_init = []
    for _, arg in expression._user_args:
        if arg.shape == (1, ):
            user_args.append(ast.Decl("double *", "%s_" % arg.name))
            user_init.append(
                ast.FlatBlock("const double %s = *%s_;" %
                              (arg.name, arg.name)))
        else:
            user_args.append(ast.Decl("double *", arg.name))
    kernel_code = ast.FunDecl(
        "void", "expression_kernel", [
            ast.Decl("double", ast.Symbol(A, (nfdof, ))),
            ast.Decl("double*", x_)
        ] + user_args, ast.Block(user_init + [init, loop], open_scope=False))
    coefficients = [coords]
    for _, arg in expression._user_args:
        coefficients.append(GlobalWrapper(arg))
    return op2.Kernel(kernel_code,
                      kernel_code.name), False, tuple(coefficients)
Exemple #22
0
def tensor_assembly_calls(builder):
    """Generates a block of statements for assembling the local
    finite element tensors.

    :arg builder: The :class:`LocalKernelBuilder` containing
        all relevant expression information and assembly calls.
    """
    assembly_calls = builder.assembly_calls
    statements = [ast.FlatBlock("/* Assemble local tensors */\n")]

    # Cell integrals are straightforward. Just splat them out.
    statements.extend(assembly_calls["cell"])

    if builder.needs_cell_facets:
        # The for-loop will have the general structure:
        #
        #    FOR (facet=0; facet<num_facets; facet++):
        #        IF (facet is interior):
        #            *interior calls
        #        ELSE IF (facet is exterior):
        #            *exterior calls
        #
        # If only interior (exterior) facets are present,
        # then only a single IF-statement checking for interior
        # (exterior) facets will be present within the loop. The
        # cell facets are labelled `1` for interior, and `0` for
        # exterior.
        statements.append(ast.FlatBlock("/* Loop over cell facets */\n"))
        int_calls = list(
            chain(*[
                assembly_calls[it_type]
                for it_type in ("interior_facet", "interior_facet_vert")
            ]))
        ext_calls = list(
            chain(*[
                assembly_calls[it_type]
                for it_type in ("exterior_facet", "exterior_facet_vert")
            ]))

        # Generate logical statements for handling exterior/interior facet
        # integrals on subdomains.
        # Currently only facet integrals are supported.
        for sd_type in ("subdomains_exterior_facet",
                        "subdomains_interior_facet"):
            stmts = []
            for sd, sd_calls in groupby(assembly_calls[sd_type],
                                        lambda x: x[0]):
                _, calls = zip(*sd_calls)
                if_sd = ast.Eq(
                    ast.Symbol(builder.cell_facet_sym,
                               rank=(builder.it_sym, 1)), sd)
                stmts.append(
                    ast.If(if_sd, (ast.Block(calls, open_scope=True), )))

            if sd_type == "subdomains_exterior_facet":
                ext_calls.extend(stmts)
            if sd_type == "subdomains_interior_facet":
                int_calls.extend(stmts)

        # Compute the number of facets to loop over
        domain = builder.expression.ufl_domain()
        if domain.cell_set._extruded:
            num_facets = domain.ufl_cell()._cells[0].num_facets()
        else:
            num_facets = domain.ufl_cell().num_facets()

        if_ext = ast.Eq(
            ast.Symbol(builder.cell_facet_sym, rank=(builder.it_sym, 0)), 0)
        if_int = ast.Eq(
            ast.Symbol(builder.cell_facet_sym, rank=(builder.it_sym, 0)), 1)
        body = []
        if ext_calls:
            body.append(
                ast.If(if_ext, (ast.Block(ext_calls, open_scope=True), )))
        if int_calls:
            body.append(
                ast.If(if_int, (ast.Block(int_calls, open_scope=True), )))

        statements.append(
            ast.For(ast.Decl("unsigned int", builder.it_sym, init=0),
                    ast.Less(builder.it_sym, num_facets),
                    ast.Incr(builder.it_sym, 1), body))

    if builder.needs_mesh_layers:
        # In the presence of interior horizontal facet calls, an
        # IF-ELIF-ELSE block is generated using the mesh levels
        # as conditions for which calls are needed:
        #
        #    IF (layer == bottom_layer):
        #        *bottom calls
        #    ELSE IF (layer == top_layer):
        #        *top calls
        #    ELSE:
        #        *top calls
        #        *bottom calls
        #
        # Any extruded top or bottom calls for extruded facets are
        # included within the appropriate mesh-level IF-blocks. If
        # no interior horizontal facet calls are present, then
        # standard IF-blocks are generated for exterior top/bottom
        # facet calls when appropriate:
        #
        #    IF (layer == bottom_layer):
        #        *bottom calls
        #
        #    IF (layer == top_layer):
        #        *top calls
        #
        # The mesh level is an integer provided as a macro kernel
        # argument.

        # FIXME: No variable layers assumption
        statements.append(ast.FlatBlock("/* Mesh levels: */\n"))
        num_layers = ast.Symbol(builder.mesh_layer_count_sym, rank=(0, ))
        layer = builder.mesh_layer_sym
        types = [
            "interior_facet_horiz_top", "interior_facet_horiz_bottom",
            "exterior_facet_top", "exterior_facet_bottom"
        ]
        decide = [
            ast.Less(layer, num_layers),
            ast.Greater(layer, 0),
            ast.Eq(layer, num_layers),
            ast.Eq(layer, 0)
        ]
        for (integral_type, which) in zip(types, decide):
            statements.append(
                ast.If(which, (ast.Block(assembly_calls[integral_type],
                                         open_scope=True), )))

    return statements
Exemple #23
0
    def init_cell_orientations(self, expr):
        """Compute and initialise :attr:`cell_orientations` relative to a specified orientation.

        :arg expr: an :class:`.Expression` evaluated to produce a
             reference normal direction.

        """
        import firedrake.function as function
        import firedrake.functionspace as functionspace

        if expr.value_shape()[0] != 3:
            raise NotImplementedError('Only implemented for 3-vectors')
        if self.ufl_cell() not in (ufl.Cell('triangle', 3), ufl.Cell("quadrilateral", 3), ufl.OuterProductCell(ufl.Cell('interval'), ufl.Cell('interval'), gdim=3)):
            raise NotImplementedError('Only implemented for triangles and quadrilaterals embedded in 3d')

        if hasattr(self.topology, '_cell_orientations'):
            raise RuntimeError("init_cell_orientations already called, did you mean to do so again?")

        v0 = lambda x: ast.Symbol("v0", (x,))
        v1 = lambda x: ast.Symbol("v1", (x,))
        n = lambda x: ast.Symbol("n", (x,))
        x = lambda x: ast.Symbol("x", (x,))
        coords = lambda x, y: ast.Symbol("coords", (x, y))

        body = []
        body += [ast.Decl("double", v(3)) for v in [v0, v1, n, x]]
        body.append(ast.Decl("double", "dot"))
        body.append(ast.Assign("dot", 0.0))
        body.append(ast.Decl("int", "i"))

        # if triangle, use v0 = x1 - x0, v1 = x2 - x0
        # otherwise, for the various quads, use v0 = x2 - x0, v1 = x1 - x0
        # recall reference element ordering:
        # triangle: 2        quad: 1 3
        #           0 1            0 2
        if self.ufl_cell() == ufl.Cell('triangle', 3):
            body.append(ast.For(ast.Assign("i", 0), ast.Less("i", 3), ast.Incr("i", 1),
                                [ast.Assign(v0("i"), ast.Sub(coords(1, "i"), coords(0, "i"))),
                                 ast.Assign(v1("i"), ast.Sub(coords(2, "i"), coords(0, "i"))),
                                 ast.Assign(x("i"), 0.0)]))
        else:
            body.append(ast.For(ast.Assign("i", 0), ast.Less("i", 3), ast.Incr("i", 1),
                                [ast.Assign(v0("i"), ast.Sub(coords(2, "i"), coords(0, "i"))),
                                 ast.Assign(v1("i"), ast.Sub(coords(1, "i"), coords(0, "i"))),
                                 ast.Assign(x("i"), 0.0)]))

        # n = v0 x v1
        body.append(ast.Assign(n(0), ast.Sub(ast.Prod(v0(1), v1(2)), ast.Prod(v0(2), v1(1)))))
        body.append(ast.Assign(n(1), ast.Sub(ast.Prod(v0(2), v1(0)), ast.Prod(v0(0), v1(2)))))
        body.append(ast.Assign(n(2), ast.Sub(ast.Prod(v0(0), v1(1)), ast.Prod(v0(1), v1(0)))))

        body.append(ast.For(ast.Assign("i", 0), ast.Less("i", 3), ast.Incr("i", 1),
                            [ast.Incr(x(j), coords("i", j)) for j in range(3)]))

        body.extend([ast.FlatBlock("dot += (%(x)s) * n[%(i)d];\n" % {"x": x_, "i": i})
                     for i, x_ in enumerate(expr.code)])
        body.append(ast.Assign("orientation[0][0]", ast.Ternary(ast.Less("dot", 0), 1, 0)))

        kernel = op2.Kernel(ast.FunDecl("void", "cell_orientations",
                                        [ast.Decl("int**", "orientation"),
                                         ast.Decl("double**", "coords")],
                                        ast.Block(body)),
                            "cell_orientations")

        # Build the cell orientations as a DG0 field (so that we can
        # pass it in for facet integrals and the like)
        fs = functionspace.FunctionSpace(self, 'DG', 0)
        cell_orientations = function.Function(fs, name="cell_orientations", dtype=np.int32)
        op2.par_loop(kernel, self.cell_set,
                     cell_orientations.dat(op2.WRITE, cell_orientations.cell_node_map()),
                     self.coordinates.dat(op2.READ, self.coordinates.cell_node_map()))
        self.topology._cell_orientations = cell_orientations
Exemple #24
0
def _generate_functions(functions, sets):
    "Generate declarations for functions and code to compute values."

    f_comment      = format["comment"]
    f_double       = format["float declaration"]
    f_F            = format["function value"]
    f_float        = format["floating point"]
    f_decl         = format["declaration"]
    f_r            = format["free indices"]
    f_iadd         = format["iadd"]
    f_loop         = format["generate loop"]

    # Create the function declarations -- only the (unique) variables we need
    const_vardecls = set(fd.id for fd in functions.values() if fd.cellwise_constant)
    const_ast_items = [pyop2.Decl(f_double, c_sym(f_F(n)), c_sym(f_float(0)))
                       for n in const_vardecls]

    vardecls = set(fd.id for fd in functions.values() if not fd.cellwise_constant)
    ast_items = [pyop2.Decl(f_double, c_sym(f_F(n)), c_sym(f_float(0)))
                 for n in vardecls]

    # Get sets.
    used_psi_tables = sets[1]
    used_nzcs = sets[2]

    # Sort functions after being cellwise constant and loop ranges.
    function_groups = collections.defaultdict(list)
    for f, fd in functions.items():
        function_groups[(fd.cellwise_constant, fd.loop_range)].append(f)

    total_ops = 0
    # Loop ranges and get list of functions.
    for (cellwise_constant, loop_range), function_list in function_groups.iteritems():
        function_expr = []
        # Loop functions.
        func_ops = 0
        for function in function_list:
            data = functions[function]
            range_i = data.loop_range
            if not isinstance(range_i, tuple):
                range_i = tuple([range_i])

            # Add name to used psi names and non zeros name to used_nzcs.
            used_psi_tables.add(data.psi_name)
            used_nzcs.update(data.used_nzcs)

            # # TODO: This check can be removed for speed later.
            # REMOVED this, since we might need to increment into the same
            # number more than once for mixed element + interior facets
            # ffc_assert(data.id not in function_expr, "This is definitely not supposed to happen!")

            # Convert function to COFFEE ast node, save string
            # representation for sorting (such that we're reproducible
            # in parallel).
            function = visit_rhs(function)
            key = str(function)
            function_expr.append((data.id, function, key))

            # Get number of operations to compute entry and add to function operations count.
            func_ops += (data.ops + 1)*sum(range_i)

        # Gather, sorted by string rep of function.
        lines = [pyop2.Incr(c_sym(f_F(n)), fn) for n, fn, _ in sorted(function_expr, key=lambda x: x[2])]
        if isinstance(loop_range, tuple):
            if not all(map(lambda x: x==loop_range[0], loop_range)):
                raise RuntimeError("General mixed elements not yet supported in PyOP2")
            loop_vars = [ (f_r[0], 0, loop_range[0]), (f_r[1], 0, len(loop_range)) ]
        else:
            loop_vars = [(f_r[0], 0, loop_range)]
        # TODO: If loop_range == 1, this loop may be unneccessary. Not sure if it's safe to just skip it.
        it_var = c_sym(loop_vars[0][0])
        loop_size = c_sym(loop_vars[0][2])
        ast_item = pyop2.For(pyop2.Decl("int", it_var, c_sym(0)), pyop2.Less(it_var, loop_size),
                             pyop2.Incr(it_var, c_sym(1)), pyop2.Block(lines, open_scope=True))
        if cellwise_constant:
            const_ast_items.append(ast_item)
        else:
            ast_items.append(ast_item)

    return const_ast_items, ast_items, total_ops
Exemple #25
0
def _generate_integral_ir(points, terms, sets, optimise_parameters, parameters):
    "Generate code to evaluate the element tensor."

    # For checking if the integral code is for a matrix
    def is_matrix(loop):
        loop_indices = [ l[0] for l in loop ]
        return (format["first free index"] in loop_indices and \
                format["second free index"] in loop_indices)

    # Prefetch formats to speed up code generation.
    p_format        = parameters["format"]
    f_comment       = format["comment"]
    f_mul           = format["mul"]
    f_scale_factor  = format["scale factor"]
    f_iadd          = format["iadd"]
    f_add           = format["add"]
    f_A             = format["element tensor"][p_format]
    f_j             = format["first free index"]
    f_k             = format["second free index"]
    f_loop          = format["generate loop"]
    f_B             = format["basis constant"]

    # Initialise return values.
    code = []
    num_ops = 0
    loops = {}

    # Extract sets.
    used_weights, used_psi_tables, used_nzcs, trans_set = sets

    nests = []
    # Loop terms and create code.
    for loop, (data, entry_vals) in terms.items():
        # If we don't have any entry values, there's no need to generate the loop.
        if not entry_vals:
            continue

        # Get data.
        t_set, u_weights, u_psi_tables, u_nzcs, basis_consts = data

        # If we have a value, then we also need to update the sets of used variables.
        trans_set.update(t_set)
        used_weights.update(u_weights)
        used_psi_tables.update(u_psi_tables)
        used_nzcs.update(u_nzcs)

        # @@@: A[0][0] += FE0[ip][j]*FE0[ip][k]*W24[ip]*det;

        entry_ir = []
        for entry, value, ops in entry_vals:
            # Left hand side
            it_vars = entry if len(loop) > 0 else (0,)
            rank = tuple(i.loop_index if hasattr(i, 'loop_index') else i for i in it_vars)
            offset = tuple((1, int(i.offset)) if hasattr(i, 'offset') else (1, 0) for i in it_vars)
            local_tensor = pyop2.Symbol(f_A(''), rank, offset)
            # Right hand side
            pyop2_rhs = visit_rhs(value)
            entry_ir.append(pyop2.Incr(local_tensor, pyop2_rhs, "#pragma coffee expression"))

        # Disgusting hack, ensure resulting IR comes out in same order
        # on all processes.
        entry_ir = sorted(entry_ir, key=lambda x: x.gencode())

        if len(loop) == 0:
            nest = pyop2.Block(entry_ir, open_scope=True)
        elif len(loop) in [1, 2]:
            it_var = c_sym(loop[0][0])
            end = c_sym(loop[0][2])
            nest = pyop2.For(pyop2.Decl("int", it_var, c_sym(0)), pyop2.Less(it_var, end), \
                             pyop2.Incr(it_var, c_sym(1)), pyop2.Block(entry_ir, open_scope=True), "#pragma coffee itspace")
        if len(loop) == 2:
            it_var = c_sym(loop[1][0])
            end = c_sym(loop[1][2])
            nest_k = pyop2.For(pyop2.Decl("int", it_var, c_sym(0)), pyop2.Less(it_var, end), \
                               pyop2.Incr(it_var, c_sym(1)), pyop2.Block(entry_ir, open_scope=True), "#pragma coffee itspace")
            nest.children[0] = pyop2.Block([nest_k], open_scope=True)
        nests.append(nest)

    return nests, num_ops
Exemple #26
0
def facet_integral_loop(cxt_kernel, builder, coordsym, cellfacetsym,
                        cell_orientations):
    """Generates a code statement for evaluating exterior/interior facet
    integrals.

    :arg cxt_kernel: A :namedtuple:`ContextKernel` containing all relevant
                     integral types and TSFC kernels associated with the
                     form nested in the expression.
    :arg builder: A :class:`KernelBuilder` containing the expression context.
    :arg coordsym: An `ast.Symbol` object representing coordinate arguments
                   for the kernel.
    :arg cellfacetsym: An `ast.Symbol` representing the cell facets.
    :arg cell_orientations: An `ast.Symbol` representing cell orientation
                            information.

    Returns: A COFFEE code statement and updated include_dirs
    """
    exp = cxt_kernel.tensor
    t = builder.temps[exp]
    it_type = cxt_kernel.original_integral_type
    itsym = ast.Symbol("i0")

    chker = {
        "interior_facet": 1,
        "interior_facet_vert": 1,
        "exterior_facet": 0,
        "exterior_facet_vert": 0
    }

    # Compute the correct number of facets for a particular facet measure
    if it_type in ["interior_facet", "exterior_facet"]:
        # Non-extruded case
        nfacet = exp.ufl_domain().ufl_cell().num_facets()

    elif it_type in ["interior_facet_vert", "exterior_facet_vert"]:
        # Extrusion case
        base_cell = exp.ufl_domain().ufl_cell()._cells[0]
        nfacet = base_cell.num_facets()

    else:
        raise ValueError("Integral type %s not supported." % it_type)

    incl = []
    funcalls = []
    checker = chker[it_type]
    for splitkernel in cxt_kernel.tsfc_kernels:
        index = splitkernel.indices
        kinfo = splitkernel.kinfo

        # Generate an iterable of coefficients to pass to the subkernel
        # if any are required
        clist = [
            c for ci in kinfo.coefficient_map
            for c in builder.coefficient(exp.coefficients()[ci])
        ]

        incl.extend(kinfo.kernel._include_dirs)
        tensor = eigen_tensor(exp, t, index)

        if kinfo.oriented:
            clist.insert(0, cell_orientations)

        clist.append(ast.FlatBlock("&%s" % itsym))
        funcalls.append(
            ast.FunCall(kinfo.kernel.name, tensor, coordsym, *clist))

    loop_body = ast.If(
        ast.Eq(ast.Symbol(cellfacetsym, rank=(itsym, )), checker),
        [ast.Block(funcalls, open_scope=True)])

    loop_stmt = ast.For(ast.Decl("unsigned int", itsym, init=0),
                        ast.Less(itsym, nfacet), ast.Incr(itsym, 1), loop_body)

    return loop_stmt, incl
Exemple #27
0
def generate_kernel_ast(builder, statements, declared_temps):
    """Glues together the complete AST for the Slate expression
    contained in the :class:`LocalKernelBuilder`.

    :arg builder: The :class:`LocalKernelBuilder` containing
        all relevant expression information.
    :arg statements: A list of COFFEE objects containing all
        assembly calls and temporary declarations.
    :arg declared_temps: A `dict` containing all previously
        declared temporaries.

    Return: A `KernelInfo` object describing the complete AST.
    """
    slate_expr = builder.expression
    if slate_expr.rank == 0:
        # Scalars are treated as 1x1 MatrixBase objects
        shape = (1, )
    else:
        shape = slate_expr.shape

    # Now we create the result statement by declaring its eigen type and
    # using Eigen::Map to move between Eigen and C data structs.
    statements.append(ast.FlatBlock("/* Map eigen tensor into C struct */\n"))
    result_sym = ast.Symbol("T%d" % len(declared_temps))
    result_data_sym = ast.Symbol("A%d" % len(declared_temps))
    result_type = "Eigen::Map<%s >" % eigen_matrixbase_type(shape)
    result = ast.Decl(ScalarType_c,
                      ast.Symbol(result_data_sym),
                      pointers=[("restrict", )])
    result_statement = ast.FlatBlock(
        "%s %s((%s *)%s);\n" %
        (result_type, result_sym, ScalarType_c, result_data_sym))
    statements.append(result_statement)

    # Generate the complete c++ string performing the linear algebra operations
    # on Eigen matrices/vectors
    statements.append(ast.FlatBlock("/* Linear algebra expression */\n"))
    cpp_string = ast.FlatBlock(slate_to_cpp(slate_expr, declared_temps))
    statements.append(ast.Incr(result_sym, cpp_string))

    # Generate arguments for the macro kernel
    args = [
        result,
        ast.Decl(ScalarType_c,
                 builder.coord_sym,
                 pointers=[("restrict", )],
                 qualifiers=["const"])
    ]

    # Orientation information
    if builder.oriented:
        args.append(
            ast.Decl("int",
                     builder.cell_orientations_sym,
                     pointers=[("restrict", )],
                     qualifiers=["const"]))

    # Coefficient information
    expr_coeffs = slate_expr.coefficients()
    for c in expr_coeffs:
        args.extend([
            ast.Decl(ScalarType_c,
                     csym,
                     pointers=[("restrict", )],
                     qualifiers=["const"]) for csym in builder.coefficient(c)
        ])

    # Facet information
    if builder.needs_cell_facets:
        f_sym = builder.cell_facet_sym
        f_arg = ast.Symbol("arg_cell_facets")
        f_dtype = as_cstr(cell_to_facets_dtype)

        # cell_facets is locally a flattened 2-D array. We typecast here so we
        # can access its entries using standard array notation.
        cast = "%s (*%s)[2] = (%s (*)[2])%s;\n" % (f_dtype, f_sym, f_dtype,
                                                   f_arg)
        statements.insert(0, ast.FlatBlock(cast))
        args.append(
            ast.Decl(f_dtype,
                     f_arg,
                     pointers=[("restrict", )],
                     qualifiers=["const"]))

    # NOTE: We need to be careful about the ordering here. Mesh layers are
    # added as the final argument to the kernel
    # and the amount of layers before that.
    if builder.needs_mesh_layers:
        args.append(
            ast.Decl("int",
                     builder.mesh_layer_count_sym,
                     pointers=[("restrict", )],
                     qualifiers=["const"]))
        args.append(ast.Decl("int", builder.mesh_layer_sym))

    # Cell size information
    if builder.needs_cell_sizes:
        args.append(
            ast.Decl(ScalarType_c,
                     builder.cell_size_sym,
                     pointers=[("restrict", )],
                     qualifiers=["const"]))

    # Macro kernel
    macro_kernel_name = "pyop2_kernel_compile_slate"
    stmts = ast.Block(statements)
    macro_kernel = ast.FunDecl("void",
                               macro_kernel_name,
                               args,
                               stmts,
                               pred=["static", "inline"])

    # Construct the final ast
    kernel_ast = ast.Node(builder.templated_subkernels + [macro_kernel])

    # Now we wrap up the kernel ast as a PyOP2 kernel and include the
    # Eigen header files
    include_dirs = list(builder.include_dirs)
    include_dirs.append(EIGEN_INCLUDE_DIR)
    op2kernel = op2.Kernel(
        kernel_ast,
        macro_kernel_name,
        cpp=True,
        include_dirs=include_dirs,
        headers=['#include <Eigen/Dense>', '#define restrict __restrict'])

    op2kernel.num_flops = builder.expression_flops + builder.terminal_flops
    # Send back a "TSFC-like" SplitKernel object with an
    # index and KernelInfo
    kinfo = KernelInfo(kernel=op2kernel,
                       integral_type=builder.integral_type,
                       oriented=builder.oriented,
                       subdomain_id="otherwise",
                       domain_number=0,
                       coefficient_map=slate_expr.coeff_map,
                       needs_cell_facets=builder.needs_cell_facets,
                       pass_layer_arg=builder.needs_mesh_layers,
                       needs_cell_sizes=builder.needs_cell_sizes)

    return kinfo
Exemple #28
0
def compile_expression(slate_expr, tsfc_parameters=None):
    """Takes a Slate expression `slate_expr` and returns the appropriate
    :class:`firedrake.op2.Kernel` object representing the Slate expression.

    :arg slate_expr: a :class:'TensorBase' expression.
    :arg tsfc_parameters: an optional `dict` of form compiler parameters to
                          be passed onto TSFC during the compilation of
                          ufl forms.

    Returns: A `tuple` containing a `SplitKernel(idx, kinfo)`
    """
    if not isinstance(slate_expr, TensorBase):
        raise ValueError("Expecting a `TensorBase` expression, not %s" %
                         type(slate_expr))

    # TODO: Get PyOP2 to write into mixed dats
    if any(len(a.function_space()) > 1 for a in slate_expr.arguments()):
        raise NotImplementedError("Compiling mixed slate expressions")

    # If the expression has already been symbolically compiled, then
    # simply reuse the produced kernel.
    if slate_expr._metakernel_cache is not None:
        return slate_expr._metakernel_cache

    # Initialize coefficients, shape and statements list
    expr_coeffs = slate_expr.coefficients()

    # We treat scalars as 1x1 MatrixBase objects, so we give
    # the right shape to do so and everything just falls out.
    # This bit here ensures the return result has the right
    # shape
    if slate_expr.rank == 0:
        shape = (1, )
    else:
        shape = slate_expr.shape

    statements = []

    # Create a builder for the Slate expression
    builder = KernelBuilder(expression=slate_expr,
                            tsfc_parameters=tsfc_parameters)

    # Initialize coordinate, cell orientations and facet/layer
    # symbols
    coordsym = ast.Symbol("coords")
    coords = None
    cell_orientations = ast.Symbol("cell_orientations")
    cellfacetsym = ast.Symbol("cell_facets")
    mesh_layer_sym = ast.Symbol("layer")
    inc = []

    # We keep track of temporaries that have been declared
    declared_temps = {}
    for cxt_kernel in builder.context_kernels:
        exp = cxt_kernel.tensor
        t = builder.temps[exp]

        if exp not in declared_temps:
            # Declare and initialize the temporary
            statements.append(ast.Decl(eigen_matrixbase_type(exp.shape), t))
            statements.append(ast.FlatBlock("%s.setZero();\n" % t))
            declared_temps[exp] = t

        it_type = cxt_kernel.original_integral_type

        if it_type not in supported_integral_types:
            raise NotImplementedError("Type %s not supported." % it_type)

        # Explicit checking of coordinates
        coordinates = exp.ufl_domain().coordinates
        if coords is not None:
            assert coordinates == coords
        else:
            coords = coordinates

        if it_type == "cell":
            # Nothing difficult about cellwise integrals. Just need
            # to get coefficient info, include_dirs and append
            # function calls to the appropriate subkernels.

            # If tensor is mixed, there will be more than one SplitKernel
            incl = []
            for splitkernel in cxt_kernel.tsfc_kernels:
                index = splitkernel.indices
                kinfo = splitkernel.kinfo

                # Generate an iterable of coefficients to pass to the subkernel
                # if any are required
                clist = [
                    c for ci in kinfo.coefficient_map
                    for c in builder.coefficient(exp.coefficients()[ci])
                ]

                if kinfo.oriented:
                    clist.insert(0, cell_orientations)

                incl.extend(kinfo.kernel._include_dirs)
                tensor = eigen_tensor(exp, t, index)
                statements.append(
                    ast.FunCall(kinfo.kernel.name, tensor, coordsym, *clist))

        elif it_type in [
                "interior_facet", "exterior_facet", "interior_facet_vert",
                "exterior_facet_vert"
        ]:
            # These integral types will require accessing local facet
            # information and looping over facet indices.
            builder.require_cell_facets()
            loop_stmt, incl = facet_integral_loop(cxt_kernel, builder,
                                                  coordsym, cellfacetsym,
                                                  cell_orientations)
            statements.append(loop_stmt)

        elif it_type == "interior_facet_horiz":
            # The infamous interior horizontal facet
            # will have two SplitKernels: one top,
            # one bottom. The mesh layer will determine
            # which kernels we call.
            builder.require_mesh_layers()
            top_sks = [
                k for k in cxt_kernel.tsfc_kernels
                if k.kinfo.integral_type == "exterior_facet_top"
            ]
            bottom_sks = [
                k for k in cxt_kernel.tsfc_kernels
                if k.kinfo.integral_type == "exterior_facet_bottom"
            ]
            assert len(top_sks) == len(bottom_sks), (
                "Number of top and bottom kernels should be equal")
            # Top and bottom kernels need to be sorted by kinfo.indices
            # if the space is mixed to ensure indices match.
            top_sks = sorted(top_sks, key=lambda x: x.indices)
            bottom_sks = sorted(bottom_sks, key=lambda x: x.indices)
            stmt, incl = extruded_int_horiz_facet(exp, builder, top_sks,
                                                  bottom_sks, coordsym,
                                                  mesh_layer_sym,
                                                  cell_orientations)
            statements.append(stmt)

        elif it_type in ["exterior_facet_bottom", "exterior_facet_top"]:
            # These kernels will only be called if we are on
            # the top or bottom layers of the extruded mesh.
            builder.require_mesh_layers()
            stmt, incl = extruded_top_bottom_facet(cxt_kernel, builder,
                                                   coordsym, mesh_layer_sym,
                                                   cell_orientations)
            statements.append(stmt)

        else:
            raise ValueError("Kernel type not recognized: %s" % it_type)

        # Don't duplicate include lines
        inc_dir = list(set(incl) - set(inc))
        inc.extend(inc_dir)

    # Now we handle any terms that require auxiliary temporaries,
    # such as inverses, transposes and actions of a tensor on a
    # coefficient
    if builder.aux_exprs:
        # The declared temps will be updated within this method
        aux_statements = auxiliary_temporaries(builder, declared_temps)
        statements.extend(aux_statements)

    # Now we create the result statement by declaring its eigen type and
    # using Eigen::Map to move between Eigen and C data structs.
    result_sym = ast.Symbol("T%d" % len(builder.temps))
    result_data_sym = ast.Symbol("A%d" % len(builder.temps))
    result_type = "Eigen::Map<%s >" % eigen_matrixbase_type(shape)
    result = ast.Decl(SCALAR_TYPE, ast.Symbol(result_data_sym, shape))
    result_statement = ast.FlatBlock(
        "%s %s((%s *)%s);\n" %
        (result_type, result_sym, SCALAR_TYPE, result_data_sym))
    statements.append(result_statement)

    # Generate the complete c++ string performing the linear algebra operations
    # on Eigen matrices/vectors
    cpp_string = ast.FlatBlock(
        metaphrase_slate_to_cpp(slate_expr, declared_temps))
    statements.append(ast.Incr(result_sym, cpp_string))

    # Finalize AST for macro kernel construction
    builder._finalize_kernels_and_update()

    # Generate arguments for the macro kernel
    args = [result, ast.Decl("%s **" % SCALAR_TYPE, coordsym)]

    # Orientation information
    if builder.oriented:
        args.append(ast.Decl("int **", cell_orientations))

    # Coefficient information
    for c in expr_coeffs:
        if isinstance(c, Constant):
            ctype = "%s *" % SCALAR_TYPE
        else:
            ctype = "%s **" % SCALAR_TYPE
        args.extend([ast.Decl(ctype, csym) for csym in builder.coefficient(c)])

    # Facet information
    if builder.needs_cell_facets:
        args.append(
            ast.Decl("%s *" % as_cstr(cell_to_facets_dtype), cellfacetsym))

    # NOTE: We need to be careful about the ordering here. Mesh layers are
    # added as the final argument to the kernel.
    if builder.needs_mesh_layers:
        args.append(ast.Decl("int", mesh_layer_sym))

    # NOTE: In the future we may want to have more than one "macro_kernel"
    macro_kernel_name = "compile_slate"
    stmt = ast.Block(statements)
    macro_kernel = builder.construct_macro_kernel(name=macro_kernel_name,
                                                  args=args,
                                                  statements=stmt)

    # Tell the builder to construct the final ast
    kernel_ast = builder.construct_ast([macro_kernel])

    # Now we wrap up the kernel ast as a PyOP2 kernel.
    # Include the Eigen header files
    inc.extend(["%s/include/eigen3/" % d for d in PETSC_DIR])
    op2kernel = op2.Kernel(
        kernel_ast,
        macro_kernel_name,
        cpp=True,
        include_dirs=inc,
        headers=['#include <Eigen/Dense>', '#define restrict __restrict'])

    assert len(slate_expr.ufl_domains()) == 1, (
        "No support for multiple domains yet!")

    # Send back a "TSFC-like" SplitKernel object with an
    # index and KernelInfo
    kinfo = KernelInfo(kernel=op2kernel,
                       integral_type=builder.integral_type,
                       oriented=builder.oriented,
                       subdomain_id="otherwise",
                       domain_number=0,
                       coefficient_map=tuple(range(len(expr_coeffs))),
                       needs_cell_facets=builder.needs_cell_facets,
                       pass_layer_arg=builder.needs_mesh_layers)

    idx = tuple([0] * slate_expr.rank)

    kernels = (SplitKernel(idx, kinfo), )

    # Store the resulting kernel for reuse
    slate_expr._metakernel_cache = kernels

    return kernels
Exemple #29
0
    def exterior_facet_boundary_node_map(self, V, method):
        """Return the :class:`pyop2.Map` from exterior facets to nodes
        on the boundary.

        :arg V: The function space.
        :arg method:  The method for determining boundary nodes.  See
           :class:`~.DirichletBC` for details.
        """
        try:
            return self.map_caches["boundary_node"][method]
        except KeyError:
            pass
        el = V.finat_element

        dim = self.mesh.facet_dimension()

        if method == "topological":
            boundary_dofs = el.entity_closure_dofs()[dim]
        elif method == "geometric":
            # This function is only called on extruded meshes when
            # asking for the nodes that live on the "vertical"
            # exterior facets.
            boundary_dofs = entity_support_dofs(el, dim)

        nodes_per_facet = \
            len(boundary_dofs[0])

        # HACK ALERT
        # The facet set does not have a halo associated with it, since
        # we only construct halos for DoF sets.  Fortunately, this
        # loop is direct and we already have all the correct
        # information available locally.  So We fake a set of the
        # correct size and carry out a direct loop
        facet_set = op2.Set(self.mesh.exterior_facets.set.total_size,
                            comm=self.mesh.comm)

        fs_dat = op2.Dat(
            facet_set**el.space_dimension(),
            data=V.exterior_facet_node_map().values_with_halo.view())

        facet_dat = op2.Dat(facet_set**nodes_per_facet, dtype=IntType)

        # Ensure these come out in sorted order.
        local_facet_nodes = numpy.array(
            [boundary_dofs[e] for e in sorted(boundary_dofs.keys())])

        # Helper function to turn the inner index of an array into c
        # array literals.
        c_array = lambda xs: "{" + ", ".join(map(str, xs)) + "}"

        # AST for: l_nodes[facet[0]][n]
        rank_ast = ast.Symbol("l_nodes",
                              rank=(ast.Symbol("facet", rank=(0, )), "n"))

        body = ast.Block([
            ast.Decl("int",
                     ast.Symbol("l_nodes",
                                (len(el.cell.topology[dim]), nodes_per_facet)),
                     init=ast.ArrayInit(
                         c_array(map(c_array, local_facet_nodes))),
                     qualifiers=["const"]),
            ast.For(
                ast.Decl("int", "n", 0), ast.Less("n", nodes_per_facet),
                ast.Incr("n", 1),
                ast.Assign(ast.Symbol("facet_nodes", ("n", )),
                           ast.Symbol("cell_nodes", (rank_ast, ))))
        ])

        kernel = op2.Kernel(
            ast.FunDecl("void", "create_bc_node_map", [
                ast.Decl("%s*" % as_cstr(fs_dat.dtype), "cell_nodes"),
                ast.Decl("%s*" % as_cstr(facet_dat.dtype), "facet_nodes"),
                ast.Decl("unsigned int*", "facet")
            ], body), "create_bc_node_map")

        local_facet_dat = op2.Dat(
            facet_set**self.mesh.exterior_facets._rank,
            self.mesh.exterior_facets.local_facet_dat.data_ro_with_halos,
            dtype=numpy.uintc)
        op2.par_loop(kernel, facet_set, fs_dat(op2.READ), facet_dat(op2.WRITE),
                     local_facet_dat(op2.READ))

        if self.extruded:
            offset = self.offset[boundary_dofs[0]]
        else:
            offset = None
        val = op2.Map(facet_set,
                      self.node_set,
                      nodes_per_facet,
                      facet_dat.data_ro_with_halos,
                      name="exterior_facet_boundary_node",
                      offset=offset)
        self.map_caches["boundary_node"][method] = val
        return val
Exemple #30
0
    def ast_matmul(self, F_a, implementation='optimized'):
        """Generate an AST for a PyOP2 kernel performing a matrix-vector multiplication."""

        # The number of dofs on each element is /ndofs*cdim/
        F_a_fs = F_a.function_space()
        ndofs = F_a_fs.fiat_element.entity_dofs()
        ndofs = sum(self.mesh.make_dofs_per_plex_entity(ndofs))
        cdim = F_a_fs.dim
        name = 'mat_vec_mul_kernel_%s' % F_a_fs.name

        identifier = (ndofs, cdim, name, implementation)
        if identifier in self.asts:
            return self.asts[identifier]

        from coffee import isa, options
        if cdim and cdim % isa['dp_reg'] == 0:
            simd_pragma = '#pragma simd reduction(+:sum)'
        else:
            simd_pragma = ''

        # Craft the AST
        if implementation == 'optimized' and cdim >= 4:
            body = ast.Incr(
                ast.Symbol('sum'),
                ast.Prod(
                    ast.Symbol('A', ('i', ),
                               ((ndofs * cdim, 'j*%d + k' % cdim), )),
                    ast.Symbol('B', ('j', 'k'))))
            body = ast.c_for('k', cdim, body, simd_pragma).children[0]
            body = [
                ast.Decl('const int',
                         ast.Symbol('index'),
                         init=ast.Symbol('i%%%d' % cdim)),
                ast.Decl('double', ast.Symbol('sum'), init=ast.Symbol('0.0')),
                ast.c_for('j', ndofs, body).children[0],
                ast.Assign(ast.Symbol('C', ('i/%d' % cdim, 'index')), 'sum')
            ]
            body = ast.Block([ast.c_for('i', ndofs * cdim, body).children[0]])
            funargs = [
                ast.Decl('double* restrict', 'A'),
                ast.Decl('double *restrict *restrict', 'B'),
                ast.Decl('double *restrict *', 'C')
            ]
            fundecl = ast.FunDecl('void', name, funargs, body,
                                  ['static', 'inline'])
        else:
            body = ast.Incr(
                ast.Symbol('C', ('i/%d' % cdim, 'index')),
                ast.Prod(
                    ast.Symbol('A', ('i', ),
                               ((ndofs * cdim, 'j*%d + k' % cdim), )),
                    ast.Symbol('B', ('j', 'k'))))
            body = ast.c_for('k', cdim, body).children[0]
            body = [
                ast.Decl('const int',
                         ast.Symbol('index'),
                         init=ast.Symbol('i%%%d' % cdim)),
                ast.Assign(ast.Symbol('C', ('i/%d' % cdim, 'index' % cdim)),
                           '0.0'),
                ast.c_for('j', ndofs, body).children[0]
            ]
            body = ast.Block([ast.c_for('i', ndofs * cdim, body).children[0]])
            funargs = [
                ast.Decl('double* restrict', 'A'),
                ast.Decl('double *restrict *restrict', 'B'),
                ast.Decl('double *restrict *', 'C')
            ]
            fundecl = ast.FunDecl('void', name, funargs, body,
                                  ['static', 'inline'])

        # Track the AST for later fast retrieval
        self.asts[identifier] = fundecl

        return fundecl