Exemple #1
0
class Processor:
    def __init__(self,
                 label_list=None,
                 path=None,
                 padding='<pad>',
                 unknown='<unk>',
                 bert_model='bert-base-cased',
                 max_length=256):
        self.path = path
        self.max_length = max_length
        self.bert_model = bert_model
        self.tokenizer = BertTokenizer.from_pretrained(self.bert_model)

        if label_list:
            self.vocabulary = Vocabulary(padding=padding, unknown=unknown)
            self.vocabulary.add_word_lst(label_list)
            self.vocabulary.build_vocab()
            self.save_vocabulary(self.path)
        else:
            self.load_vocabulary(self.path)

    def set_vocabulary(self, vocabulary):
        self.vocabulary = vocabulary

    def get_vocabulary(self):
        return self.vocabulary

    def save_vocabulary(self, path):
        self.vocabulary.save(os.path.join(path, 'vocabulary.txt'))

    def load_vocabulary(self, path):
        self.vocabulary = Vocabulary.load(os.path.join(path, 'vocabulary.txt'))

    def load(self):
        pass
Exemple #2
0
class ACE2005CASEEProcessor:
    def __init__(self,
                 schema_path=None,
                 trigger_path=None,
                 argument_path=None,
                 bert_model='bert-base-cased',
                 max_length=128):
        self.schema_path = schema_path
        self.trigger_path = trigger_path
        self.argument_path = argument_path
        self.bert_model = bert_model
        self.max_length = max_length

        self.tokenizer = BertTokenizer.from_pretrained(self.bert_model)
        with open(self.schema_path, 'r', encoding='utf-8') as f:
            self.schema_str = json.load(f)

        self.trigger_type_list = list()
        self.argument_type_list = list()
        trigger_type_set = set()
        argument_type_set = set()
        for trigger_type, argument_type_list in self.schema_str.items():
            trigger_type_set.add(trigger_type)
            for argument_type in argument_type_list:
                argument_type_set.add(argument_type)
        self.trigger_type_list = list(trigger_type_set)
        self.argument_type_list = list(argument_type_set)

        self.args_s_id = {}
        self.args_e_id = {}
        for i in range(len(self.argument_type_list)):
            s = self.argument_type_list[i] + '_s'
            self.args_s_id[s] = i
            e = self.argument_type_list[i] + '_e'
            self.args_e_id[e] = i

        if os.path.exists(self.trigger_path):
            self.trigger_vocabulary = Vocabulary.load(self.trigger_path)
        else:
            self.trigger_vocabulary = Vocabulary(padding=None, unknown=None)
            self.trigger_vocabulary.add_word_lst(self.trigger_type_list)
            self.trigger_vocabulary.build_vocab()
            self.trigger_vocabulary.save(self.trigger_path)
        if os.path.exists(self.argument_path):
            self.argument_vocabulary = Vocabulary.load(self.argument_path)
        else:
            self.argument_vocabulary = Vocabulary(padding=None, unknown=None)
            self.argument_vocabulary.add_word_lst(self.argument_type_list)
            self.argument_vocabulary.build_vocab()
            self.argument_vocabulary.save(self.argument_path)

        self.schema_id = {}
        for trigger_type, argument_type_list in self.schema_str.items():
            self.schema_id[self.trigger_vocabulary.word2idx[trigger_type]] = [
                self.argument_vocabulary.word2idx[a]
                for a in argument_type_list
            ]
        self.trigger_type_num = len(self.trigger_vocabulary)
        self.argument_type_num = len(self.argument_vocabulary)
        self.trigger_max_span_len = {}
        self.argument_max_span_len = {}
        for name in self.trigger_vocabulary.word2idx:
            self.trigger_max_span_len[name] = 1
        for name in self.argument_vocabulary.word2idx:
            self.argument_max_span_len[name] = 1

    def get_trigger_max_span_len(self):
        return self.trigger_max_span_len

    def get_argument_max_span_len(self):
        return self.argument_max_span_len

    def process_train(self, dataset):
        datable = DataTable()
        for content, index, type, args, occur, triggers, id in \
            tqdm(zip(dataset["content"], dataset["index"], dataset["type"],
                     dataset["args"], dataset["occur"], dataset["triggers"],dataset["id"]),total=len(dataset["content"])):
            tokens_id, is_heads, head_indexes = [], [], []
            words = ['[CLS]'] + content + ['[SEP]']
            for w in words:
                tokens = self.tokenizer.tokenize(w) if w not in [
                    '[CLS]', '[SEP]'
                ] else [w]
                tokens_w_id = self.tokenizer.convert_tokens_to_ids(tokens)
                # if w in ['[CLS]', '[SEP]']:
                #     is_head = [0]
                # else:
                is_head = [1] + [0] * (len(tokens) - 1)
                tokens_id.extend(tokens_w_id)
                is_heads.extend(is_head)
            token_masks = [True] * len(tokens_id) + [False] * (
                self.max_length - len(tokens_id))
            token_masks = token_masks[:self.max_length]
            tokens_id = tokens_id + [0] * (self.max_length - len(tokens_id))
            tokens_id = tokens_id[:self.max_length]
            is_heads = is_heads[:self.max_length]
            for i in range(len(is_heads)):
                if is_heads[i]:
                    head_indexes.append(i)
            head_indexes = head_indexes + [0] * (self.max_length -
                                                 len(head_indexes))
            head_indexes = head_indexes[:self.max_length]

            type_vec = np.array([0] * self.trigger_type_num)
            type_id = -1
            if type != "<unk>":
                type_id = self.trigger_vocabulary.word2idx[type]
                for occ in occur:
                    idx = self.trigger_vocabulary.word2idx[occ]
                    type_vec[idx] = 1

            t_m = [0] * self.max_length
            r_pos = list(range(-0, 0)) + [0] * (0 - 0 + 1) + list(
                range(1, self.max_length - 0))
            r_pos = [p + self.max_length for p in r_pos]
            if index is not None:
                span = triggers[index]
                self.trigger_max_span_len[type] = max(
                    self.trigger_max_span_len[type], span[1] - span[0])
                start_idx = span[0] + 1
                end_idx = span[1] + 1 - 1
                r_pos = list(range(
                    -start_idx, 0)) + [0] * (end_idx - start_idx + 1) + list(
                        range(1, self.max_length - end_idx))
                r_pos = [p + self.max_length for p in r_pos]
                t_m = [0] * self.max_length
                t_m[start_idx] = 1
                t_m[end_idx] = 1

            t_index = index

            ##

            t_s = [0] * self.max_length
            t_e = [0] * self.max_length

            for t in triggers:
                t_s[t[0] + 1] = 1
                t_e[t[1] + 1 - 1] = 1

            args_s = np.zeros(shape=[self.argument_type_num, self.max_length])
            args_e = np.zeros(shape=[self.argument_type_num, self.max_length])
            arg_mask = [0] * self.argument_type_num
            for args_name in args:
                s_r_i = self.argument_vocabulary.word2idx[args_name]
                e_r_i = self.argument_vocabulary.word2idx[args_name]
                # s_r_i = self.args_s_id[args_name + '_s']
                # e_r_i = self.args_e_id[args_name + '_e']
                arg_mask[s_r_i] = 1
                for span in args[args_name]:
                    self.argument_max_span_len[args_name] = max(
                        span[1] - span[0],
                        self.argument_max_span_len[args_name])
                    args_s[s_r_i][span[0] + 1] = 1
                    args_e[e_r_i][span[1] + 1 - 1] = 1

            if type_id != -1:
                datable("data_ids", id)
                datable("tokens_id", tokens_id)
                datable("token_masks", token_masks)
                datable("head_indexes", head_indexes)
                datable("type_id", type_id)
                datable("type_vec", type_vec)
                datable("r_pos", r_pos)
                datable("t_m", t_m)
                datable("t_index", t_index)
                datable("t_s", t_s)
                datable("t_e", t_e)
                datable("a_s", args_s)
                datable("a_e", args_e)
                datable("a_m", arg_mask)
                datable("content", content)

        return datable

    def process_dev(self, dataset):
        datable = DataTable()
        for content, index, type, args, occur, triggers, id in \
                tqdm(zip(dataset["content"], dataset["index"], dataset["type"],
                         dataset["args"], dataset["occur"], dataset["triggers"], dataset["id"]),
                     total=len(dataset["content"])):
            tokens_id, is_heads, head_indexes = [], [], []
            words = ['[CLS]'] + content + ['[SEP]']
            for w in words:
                tokens = self.tokenizer.tokenize(w) if w not in [
                    '[CLS]', '[SEP]'
                ] else [w]
                tokens_w_id = self.tokenizer.convert_tokens_to_ids(tokens)
                # if w in ['[CLS]', '[SEP]']:
                #     is_head = [0]
                # else:
                is_head = [1] + [0] * (len(tokens) - 1)
                tokens_id.extend(tokens_w_id)
                is_heads.extend(is_head)
            token_masks = [True] * len(tokens_id) + [False] * (
                self.max_length - len(tokens_id))
            token_masks = token_masks[:self.max_length]
            tokens_id = tokens_id + [0] * (self.max_length - len(tokens_id))
            tokens_id = tokens_id[:self.max_length]
            is_heads = is_heads[:self.max_length]
            for i in range(len(is_heads)):
                if is_heads[i]:
                    head_indexes.append(i)
            head_indexes = head_indexes + [0] * (self.max_length -
                                                 len(head_indexes))
            head_indexes = head_indexes[:self.max_length]

            type_vec = np.array([0] * self.trigger_type_num)
            type_id = -1
            if type != "<unk>":
                type_id = self.trigger_vocabulary.word2idx[type]
                for occ in occur:
                    idx = self.trigger_vocabulary.word2idx[occ]
                    type_vec[idx] = 1

            t_m = [0] * self.max_length
            r_pos = list(range(-0, 0)) + [0] * (0 - 0 + 1) + list(
                range(1, self.max_length - 0))
            r_pos = [p + self.max_length for p in r_pos]
            if index is not None:
                span = triggers[index]
                self.trigger_max_span_len[type] = max(
                    self.trigger_max_span_len[type], span[1] - span[0])
                start_idx = span[0] + 1
                end_idx = span[1] + 1 - 1
                r_pos = list(range(
                    -start_idx, 0)) + [0] * (end_idx - start_idx + 1) + list(
                        range(1, self.max_length - end_idx))
                r_pos = [p + self.max_length for p in r_pos]
                t_m = [0] * self.max_length
                t_m[start_idx] = 1
                t_m[end_idx] = 1

            t_index = index

            triggers_truth = [(span[0] + 1, span[1] + 1 - 1)
                              for span in triggers]  # 触发词起止列表改成左闭右闭
            args_truth = {i: [] for i in range(self.argument_type_num)}
            for args_name in args:
                s_r_i = self.argument_vocabulary.word2idx[args_name]
                # s_r_i = self.args_s_id[args_name + '_s']
                for i, span in enumerate(args[args_name]):
                    self.argument_max_span_len[args_name] = max(
                        span[1] - span[0],
                        self.argument_max_span_len[args_name])
                    args_truth[s_r_i].append((span[0] + 1, span[1] + 1 - 1))
            if type_id != -1:
                datable("data_ids", id)
                datable("type_id", type_id)
                datable("type_vec", type_vec)
                datable("tokens_id", tokens_id)
                datable("token_masks", token_masks)
                datable("t_index", t_index)
                datable("r_pos", r_pos)
                datable("t_m", t_m)
                datable("triggers_truth", triggers_truth)
                datable("args_truth", args_truth)
                datable("head_indexes", head_indexes)
                datable("content", content)
        return datable

    def process_test(self, dataset):
        datable = DataTable()
        for content, index, type, args, occur, triggers, id in \
                tqdm(zip(dataset["content"], dataset["index"], dataset["type"],
                         dataset["args"], dataset["occur"], dataset["triggers"], dataset["id"]),
                     total=len(dataset["content"])):
            tokens_id, is_heads, head_indexes = [], [], []
            words = ['[CLS]'] + content + ['[SEP]']
            for w in words:
                tokens = self.tokenizer.tokenize(w) if w not in [
                    '[CLS]', '[SEP]'
                ] else [w]
                tokens_w_id = self.tokenizer.convert_tokens_to_ids(tokens)
                # if w in ['[CLS]', '[SEP]']:
                #     is_head = [0]
                # else:
                is_head = [1] + [0] * (len(tokens) - 1)
                tokens_id.extend(tokens_w_id)
                is_heads.extend(is_head)
            token_masks = [True] * len(tokens_id) + [False] * (
                self.max_length - len(tokens_id))
            token_masks = token_masks[:self.max_length]
            tokens_id = tokens_id + [0] * (self.max_length - len(tokens_id))
            tokens_id = tokens_id[:self.max_length]
            is_heads = is_heads[:self.max_length]
            for i in range(len(is_heads)):
                if is_heads[i]:
                    head_indexes.append(i)
            head_indexes = head_indexes + [0] * (self.max_length -
                                                 len(head_indexes))
            head_indexes = head_indexes[:self.max_length]

            type_vec = np.array([0] * self.trigger_type_num)
            type_id = -1
            if type != "<unk>":
                type_id = self.trigger_vocabulary.word2idx[type]
                for occ in occur:
                    idx = self.trigger_vocabulary.word2idx[occ]
                    type_vec[idx] = 1

            t_m = [0] * self.max_length
            r_pos = list(range(-0, 0)) + [0] * (0 - 0 + 1) + list(
                range(1, self.max_length - 0))
            r_pos = [p + self.max_length for p in r_pos]
            if index is not None:
                span = triggers[index]
                self.trigger_max_span_len[type] = max(
                    self.trigger_max_span_len[type], span[1] - span[0])
                start_idx = span[0] + 1
                end_idx = span[1] + 1 - 1
                r_pos = list(range(
                    -start_idx, 0)) + [0] * (end_idx - start_idx + 1) + list(
                        range(1, self.max_length - end_idx))
                r_pos = [p + self.max_length for p in r_pos]
                t_m = [0] * self.max_length
                t_m[start_idx] = 1
                t_m[end_idx] = 1

            t_index = index

            triggers_truth = [(span[0] + 1, span[1] + 1 - 1)
                              for span in triggers]  # 触发词起止列表改成左闭右闭
            args_truth = {i: [] for i in range(self.argument_type_num)}
            for args_name in args:
                s_r_i = self.argument_vocabulary.word2idx[args_name]
                # s_r_i = self.args_s_id[args_name + '_s']
                for span in args[args_name]:
                    args_truth[s_r_i].append((span[0] + 1, span[1] + 1 - 1))
            if type_id != -1:
                datable("data_ids", id)
                datable("type_id", type_id)
                datable("type_vec", type_vec)
                datable("tokens_id", tokens_id)
                datable("token_masks", token_masks)
                datable("t_index", t_index)
                datable("r_pos", r_pos)
                datable("t_m", t_m)
                datable("triggers_truth", triggers_truth)
                datable("args_truth", args_truth)
                datable("head_indexes", head_indexes)
                datable("content", content)
        return datable

    def get_trigger_vocabulary(self):
        return self.trigger_vocabulary

    def get_argument_vocabulary(self):
        return self.argument_vocabulary
Exemple #3
0
class FrameNet4JointProcessor:
    def __init__(self,
                 node_types_label_list=None,
                 node_attrs_label_list=None,
                 p2p_edges_label_list=None,
                 p2r_edges_label_list=None,
                 path=None,bert_model='bert-base-cased',max_span_width = 15, max_length=128):
        self.path = path
        self.bert_model = bert_model
        self.max_length = max_length
        self.tokenizer = BertTokenizer.from_pretrained(bert_model)
        self.max_span_width = max_span_width
        self._ontology = FrameOntology(self.path)


        if node_types_label_list:
            self.node_types_vocabulary = Vocabulary(padding="O", unknown=None)
            self.node_types_vocabulary.add_word_lst(node_types_label_list)
            self.node_types_vocabulary.build_vocab()
            self.node_types_vocabulary.save(os.path.join(path, 'node_types_vocabulary.txt'))
        else:
            self.node_types_vocabulary = Vocabulary.load(os.path.join(path, 'node_types_vocabulary.txt'))

        if node_attrs_label_list:
            self.node_attrs_vocabulary = Vocabulary(padding="O", unknown=None)
            self.node_attrs_vocabulary.add_word_lst(node_attrs_label_list)
            self.node_attrs_vocabulary.build_vocab()
            self.node_attrs_vocabulary.save(os.path.join(path, 'node_attrs_vocabulary.txt'))
        else:
            self.node_attrs_vocabulary = Vocabulary.load(os.path.join(path, 'node_attrs_vocabulary.txt'))

        if p2p_edges_label_list:
            self.p2p_edges_vocabulary = Vocabulary(padding=None, unknown=None)
            self.p2p_edges_vocabulary.add_word_lst(p2p_edges_label_list)
            self.p2p_edges_vocabulary.build_vocab()
            self.p2p_edges_vocabulary.save(os.path.join(path, 'p2p_edges_vocabulary.txt'))
        else:
            self.p2p_edges_vocabulary = Vocabulary.load(os.path.join(path, 'p2p_edges_vocabulary.txt'))

        if p2r_edges_label_list:
            self.p2r_edges_vocabulary = Vocabulary(padding=None, unknown=None)
            self.p2r_edges_vocabulary.add_word_lst(p2r_edges_label_list)
            self.p2r_edges_vocabulary.build_vocab()
            self.p2r_edges_vocabulary.save(os.path.join(path, 'p2r_edges_vocabulary.txt'))
        else:
            self.p2r_edges_vocabulary = Vocabulary.load(os.path.join(path, 'p2r_edges_vocabulary.txt'))


    def get_node_types_vocabulary(self):
        return self.node_types_vocabulary
    def get_node_attrs_vocabulary(self):
        return self.node_attrs_vocabulary
    def get_p2p_edges_vocabulary(self):
        return self.p2p_edges_vocabulary
    def get_p2r_edges_vocabulary(self):
        return self.p2r_edges_vocabulary

    def process(self, dataset):
        datable = DataTable()
        for words,lemmas,node_types,node_attrs,origin_lexical_units,p2p_edges,p2r_edges,origin_frames,frame_elements in \
                tqdm(zip(dataset["words"],dataset["lemma"],dataset["node_types"],
                dataset["node_attrs"],dataset["origin_lexical_units"],dataset["p2p_edges"],
                dataset["p2r_edges"],dataset["origin_frames"],dataset["frame_elements"]),total=len(dataset['words'])):
            tokens_x,token_masks,head_indexes,spans,\
            node_type_labels_list,node_attr_labels_list,\
            node_valid_attrs_list,valid_p2r_edges_list,\
            p2p_edge_labels_and_indices,p2r_edge_labels_and_indices,raw_words_len,n_spans = self.process_item(words,lemmas,node_types,node_attrs,origin_lexical_units,p2p_edges,p2r_edges,origin_frames,frame_elements )
            datable("tokens_x", tokens_x)
            datable("token_masks",token_masks)
            datable("head_indexes",head_indexes)
            datable("spans",spans )
            datable("node_type_labels_list",node_type_labels_list )#节点粗粒度分类
            datable("node_attr_labels_list",node_attr_labels_list )#节点细粒度分类
            datable("node_valid_attrs_list",node_valid_attrs_list)
            datable("valid_p2r_edges_list", valid_p2r_edges_list)
            datable("p2p_edge_labels_and_indices", p2p_edge_labels_and_indices)
            datable("p2r_edge_labels_and_indices", p2r_edge_labels_and_indices)
            datable("raw_words_len", raw_words_len)
            datable("n_spans",n_spans )
        return datable


    def process_item(self,raw_words,lemmas,node_types,node_attrs,origin_lexical_units,p2p_edges,p2r_edges,origin_frames,frame_elements ):
        #process token
        tokens_x, is_heads,head_indexes = [],[],[]
        raw_words_len = len(raw_words)
        words = ['[CLS]'] + raw_words + ['[SEP]']
        for w in words:
            tokens = self.tokenizer.tokenize(w) if w not in ['[CLS]', '[SEP]'] else [w]
            tokens_xx = self.tokenizer.convert_tokens_to_ids(tokens)
            if w in ['[CLS]', '[SEP]']:
                is_head = [0]
            else:
                is_head = [1] + [0] * (len(tokens) - 1)
            tokens_x.extend(tokens_xx)
            is_heads.extend(is_head)
        token_masks = [True]*len(tokens_x) + [False] * (self.max_length - len(tokens_x))
        tokens_x = tokens_x + [0] * (self.max_length - len(tokens_x))
        for i in range(len(is_heads)):
            if is_heads[i]:
                head_indexes.append(i)
        head_indexes = head_indexes + [0] * (self.max_length - len(head_indexes))

        #process other data
        node_types_dict, node_attrs_dict, origin_lus_dict, \
        p2p_edges_dict, p2r_edges_dict, origin_frames_dict, frame_elements_dict = \
            format_label_fields(node_types, node_attrs, origin_lexical_units,p2p_edges, p2r_edges,
                                                                          origin_frames, frame_elements)

        #process span and node
        node_valid_attrs_list= []  # use for the comprehensive vocabulary
        valid_p2r_edges_list= []
        node_type_labels_list=[]
        node_attr_labels_list=[]
        spans=self.get_spans(raw_words,max_span_width=self.max_span_width)
        for start, end in spans:
            span_ix = (start, end)
            node_type_label = node_types_dict[span_ix]
            node_attr_label = node_attrs_dict[span_ix]

            node_type_labels_list.append(node_type_label)
            node_attr_labels_list.append(node_attr_label)

            lexical_unit = origin_lus_dict[span_ix]
            if lexical_unit in self._ontology.lu_frame_map:
                valid_attrs = self._ontology.lu_frame_map[lexical_unit]
            else:
                valid_attrs = ["O"]
            node_valid_attrs_list.append( [x for x in valid_attrs])

            if node_attr_label in self._ontology.frame_fe_map:
                valid_p2r_edge_labels = self._ontology.frame_fe_map[node_attr_label]
                valid_p2r_edges_list.append([x for x in valid_p2r_edge_labels])
            else:
                valid_p2r_edges_list.append([-1])

        #process edge
        n_spans = len(spans)
        span_tuples = [(span[0], span[1]) for span in spans]
        candidate_indices = [(i, j) for i in range(n_spans) for j in range(n_spans)]

        p2p_edge_labels = []
        p2p_edge_indices = []
        p2p_edge_labels_and_indices={}
        p2r_edge_labels = []
        p2r_edge_indices = []
        p2r_edge_labels_and_indices = {}
        for i, j in candidate_indices:
            # becasue i index is nested, j is not nested
            span_pair = (span_tuples[i], span_tuples[j])
            p2p_edge_label = p2p_edges_dict[span_pair]
            p2r_edge_label = p2r_edges_dict[span_pair]
            if p2p_edge_label:
                p2p_edge_indices.append((i, j))
                p2p_edge_labels.append(p2p_edge_label)
            if p2r_edge_label:
                p2r_edge_indices.append((i, j))
                p2r_edge_labels.append(p2r_edge_label)

        p2p_edge_labels_and_indices["indices"] = p2p_edge_indices
        p2p_edge_labels_and_indices["labels"] = p2p_edge_labels
        p2r_edge_labels_and_indices["indices"] = p2r_edge_indices
        p2r_edge_labels_and_indices["labels"] = p2r_edge_labels


        return tokens_x,token_masks,head_indexes,spans,node_type_labels_list,node_attr_labels_list,node_valid_attrs_list,valid_p2r_edges_list,p2p_edge_labels_and_indices,p2r_edge_labels_and_indices,raw_words_len,n_spans

    def get_spans(self,tokens,min_span_width=1 ,max_span_width=None, filter_function= None):
        max_span_width = max_span_width or len(tokens)
        filter_function = filter_function or (lambda x: True)
        spans= []
        for start_index in range(len(tokens)):
            last_end_index = min(start_index + max_span_width, len(tokens))
            first_end_index = min(start_index + min_span_width - 1, len(tokens))
            for end_index in range(first_end_index, last_end_index):
                start = start_index
                end = end_index
                if filter_function(tokens[slice(start_index, end_index + 1)]):
                    spans.append((start, end))
        return spans
Exemple #4
0
class FINANCECASEEProcessor:
    def __init__(self,
                 schema_path=None,
                 trigger_path=None,
                 argument_path=None,
                 bert_model='bert-base-chinese',
                 max_length=128):
        self.schema_path = schema_path
        self.trigger_path = trigger_path
        self.argument_path = argument_path
        self.bert_model = bert_model
        self.max_length = max_length

        self.tokenizer = BertTokenizer.from_pretrained(self.bert_model)
        with open(self.schema_path, 'r', encoding='utf-8') as f:
            self.schema_str = json.load(f)

        self.trigger_type_list = list()
        self.argument_type_list = list()
        trigger_type_set = set()
        argument_type_set = set()
        for trigger_type, argument_type_list in self.schema_str.items():
            trigger_type_set.add(trigger_type)
            for argument_type in argument_type_list:
                argument_type_set.add(argument_type)
        self.trigger_type_list = list(trigger_type_set)
        self.argument_type_list = list(argument_type_set)

        self.args_s_id = {}
        self.args_e_id = {}
        for i in range(len(self.argument_type_list)):
            s = self.argument_type_list[i] + '_s'
            self.args_s_id[s] = i
            e = self.argument_type_list[i] + '_e'
            self.args_e_id[e] = i

        # if os.path.exists(self.trigger_path):
        #     self.trigger_vocabulary = Vocabulary.load(self.trigger_path)
        # else:
        self.trigger_vocabulary = Vocabulary(padding=None, unknown=None)
        self.trigger_vocabulary.add_word_lst(
            ['质押', '股份股权转让', '投资', '减持', '起诉', '收购', '判决', '签署合同', '担保', '中标'])
        self.trigger_vocabulary.build_vocab()
        self.trigger_vocabulary.save(self.trigger_path)
        # if os.path.exists(self.argument_path):
        #     self.argument_vocabulary = Vocabulary.load(self.argument_path)
        # else:
        self.argument_vocabulary = Vocabulary(padding=None, unknown=None)
        self.argument_vocabulary.add_word_lst([
            'collateral', 'obj-per', 'sub-per', 'sub-org', 'share-per',
            'title', 'way', 'money', 'obj-org', 'number', 'amount',
            'proportion', 'target-company', 'date', 'sub', 'share-org', 'obj',
            'institution'
        ])
        self.argument_vocabulary.build_vocab()
        self.argument_vocabulary.save(self.argument_path)

        self.schema_id = {}
        for trigger_type, argument_type_list in self.schema_str.items():
            self.schema_id[self.trigger_vocabulary.word2idx[trigger_type]] = [
                self.argument_vocabulary.word2idx[a]
                for a in argument_type_list
            ]
        self.trigger_type_num = len(self.trigger_vocabulary)
        self.argument_type_num = len(self.argument_vocabulary)
        self.trigger_max_span_len = {}
        self.argument_max_span_len = {}
        for name in self.trigger_vocabulary.word2idx:
            self.trigger_max_span_len[name] = 1
        for name in self.argument_vocabulary.word2idx:
            self.argument_max_span_len[name] = 1

    def get_trigger_max_span_len(self):
        return self.trigger_max_span_len

    def get_argument_max_span_len(self):
        return self.argument_max_span_len

    def process_train(self, dataset):
        datable = DataTable()
        for content, index, type, args, occur, triggers, id in \
            tqdm(zip(dataset["content"], dataset["index"], dataset["type"],
                     dataset["args"], dataset["occur"], dataset["triggers"],dataset["id"]),total=len(dataset["content"])):
            tokens_id, is_heads, head_indexes = [], [], []
            # content = list(map(lambda x: str(x), content))
            # words = ['[CLS]'] +content + ['[SEP]']
            # for w in words:
            #     tokens = self.tokenizer.tokenize(w) if w not in ['[CLS]', '[SEP]'] else [w]
            #     tokens_w_id = self.tokenizer.convert_tokens_to_ids(tokens)
            #     # if w in ['[CLS]', '[SEP]']:
            #     #     is_head = [0]
            #     # else:
            #     is_head = [1] + [0] * (len(tokens) - 1)
            #     tokens_id.extend(tokens_w_id)
            #     is_heads.extend(is_head)
            # token_masks = [True] * len(tokens_id) + [False] * (self.max_length - len(tokens_id))
            # token_masks=token_masks[: self.max_length]
            # tokens_id = tokens_id + [0] * (self.max_length - len(tokens_id))
            # tokens_id=tokens_id[: self.max_length]
            # is_heads=is_heads[: self.max_length]
            # for i in range(len(is_heads)):
            #     if is_heads[i]:
            #         head_indexes.append(i)
            # head_indexes = head_indexes + [0] * (self.max_length - len(head_indexes))
            # head_indexes=head_indexes[: self.max_length]
            data_content = [token.lower()
                            for token in content]  # 字符串遍历是一次取一个字,把字放在列表里面
            data_content = list(data_content)  # 再把这个列表强制类型转换一下,继续变成列表
            inputs = self.tokenizer.encode_plus(data_content,
                                                add_special_tokens=True,
                                                max_length=self.max_length,
                                                truncation=True,
                                                padding='max_length')
            tokens_id, segs, token_masks = inputs["input_ids"], inputs[
                "token_type_ids"], inputs['attention_mask']
            head_indexes = list(np.arange(0, sum(token_masks)))
            head_indexes = head_indexes + [0] * (self.max_length -
                                                 len(head_indexes))
            head_indexes = head_indexes[:self.max_length]

            type_vec = np.array([0] * self.trigger_type_num)
            type_id = -1
            if type != "<unk>":
                type_id = self.trigger_vocabulary.word2idx[type]
                for occ in occur:
                    idx = self.trigger_vocabulary.word2idx[occ]
                    type_vec[idx] = 1

            t_m = [0] * self.max_length
            r_pos = list(range(-0, 0)) + [0] * (0 - 0 + 1) + list(
                range(1, self.max_length - 0))
            r_pos = [p + self.max_length for p in r_pos]
            if index is not None:
                span = triggers[index]
                self.trigger_max_span_len[type] = max(
                    self.trigger_max_span_len[type], span[1] - span[0])
                start_idx = span[0] + 1
                end_idx = span[1] + 1 - 1
                r_pos = list(range(
                    -start_idx, 0)) + [0] * (end_idx - start_idx + 1) + list(
                        range(1, self.max_length - end_idx))
                r_pos = [p + self.max_length for p in r_pos]
                t_m = [0] * self.max_length
                t_m[start_idx] = 1
                t_m[end_idx] = 1

            t_index = index

            ##

            t_s = [0] * self.max_length
            t_e = [0] * self.max_length

            for t in triggers:
                t_s[t[0] + 1] = 1
                t_e[t[1] + 1 - 1] = 1

            args_s = np.zeros(shape=[self.argument_type_num, self.max_length])
            args_e = np.zeros(shape=[self.argument_type_num, self.max_length])
            arg_mask = [0] * self.argument_type_num
            for args_name in args:
                s_r_i = self.argument_vocabulary.word2idx[args_name]
                e_r_i = self.argument_vocabulary.word2idx[args_name]
                # s_r_i = self.args_s_id[args_name + '_s']
                # e_r_i = self.args_e_id[args_name + '_e']
                arg_mask[s_r_i] = 1
                for span in args[args_name]:
                    self.argument_max_span_len[args_name] = max(
                        span[1] - span[0],
                        self.argument_max_span_len[args_name])
                    args_s[s_r_i][span[0] + 1] = 1
                    args_e[e_r_i][span[1] + 1 - 1] = 1

            if type_id != -1:
                datable("data_ids", id)
                datable("tokens_id", tokens_id)
                datable("token_masks", token_masks)
                datable("head_indexes", head_indexes)
                datable("type_id", type_id)
                datable("type_vec", type_vec)
                datable("r_pos", r_pos)
                datable("t_m", t_m)
                datable("t_index", t_index)
                datable("t_s", t_s)
                datable("t_e", t_e)
                datable("a_s", args_s)
                datable("a_e", args_e)
                datable("a_m", arg_mask)
                datable("content", content)

        return datable

    def process_dev(self, dataset):
        datable = DataTable()
        for content, index, type, args, occur, triggers, id in \
                tqdm(zip(dataset["content"], dataset["index"], dataset["type"],
                         dataset["args"], dataset["occur"], dataset["triggers"], dataset["id"]),
                     total=len(dataset["content"])):
            tokens_id, is_heads, head_indexes = [], [], []
            # content = list(map(lambda x: str(x), content))
            # words = ['[CLS]'] +content + ['[SEP]']
            # for w in words:
            #     tokens = self.tokenizer.tokenize(w) if w not in ['[CLS]', '[SEP]'] else [w]
            #     tokens_w_id = self.tokenizer.convert_tokens_to_ids(tokens)
            #     # if w in ['[CLS]', '[SEP]']:
            #     #     is_head = [0]
            #     # else:
            #     is_head = [1] + [0] * (len(tokens) - 1)
            #     tokens_id.extend(tokens_w_id)
            #     is_heads.extend(is_head)
            # token_masks = [True] * len(tokens_id) + [False] * (self.max_length - len(tokens_id))
            # token_masks=token_masks[: self.max_length]
            # tokens_id = tokens_id + [0] * (self.max_length - len(tokens_id))
            # tokens_id=tokens_id[: self.max_length]
            # is_heads=is_heads[: self.max_length]
            # for i in range(len(is_heads)):
            #     if is_heads[i]:
            #         head_indexes.append(i)
            # head_indexes = head_indexes + [0] * (self.max_length - len(head_indexes))
            # head_indexes=head_indexes[: self.max_length]
            data_content = [token.lower()
                            for token in content]  # 字符串遍历是一次取一个字,把字放在列表里面
            data_content = list(data_content)  # 再把这个列表强制类型转换一下,继续变成列表
            inputs = self.tokenizer.encode_plus(data_content,
                                                add_special_tokens=True,
                                                max_length=self.max_length,
                                                truncation=True,
                                                padding='max_length')
            tokens_id, segs, token_masks = inputs["input_ids"], inputs[
                "token_type_ids"], inputs['attention_mask']
            head_indexes = list(np.arange(0, sum(token_masks)))
            head_indexes = head_indexes + [0] * (self.max_length -
                                                 len(head_indexes))
            head_indexes = head_indexes[:self.max_length]

            type_vec = np.array([0] * self.trigger_type_num)
            type_id = -1
            if type != "<unk>":
                type_id = self.trigger_vocabulary.word2idx[type]
                for occ in occur:
                    idx = self.trigger_vocabulary.word2idx[occ]
                    type_vec[idx] = 1

            t_m = [0] * self.max_length
            r_pos = list(range(-0, 0)) + [0] * (0 - 0 + 1) + list(
                range(1, self.max_length - 0))
            r_pos = [p + self.max_length for p in r_pos]
            if index is not None:
                span = triggers[index]
                self.trigger_max_span_len[type] = max(
                    self.trigger_max_span_len[type], span[1] - span[0])
                start_idx = span[0] + 1
                end_idx = span[1] + 1 - 1
                r_pos = list(range(
                    -start_idx, 0)) + [0] * (end_idx - start_idx + 1) + list(
                        range(1, self.max_length - end_idx))
                r_pos = [p + self.max_length for p in r_pos]
                t_m = [0] * self.max_length
                t_m[start_idx] = 1
                t_m[end_idx] = 1

            t_index = index

            triggers_truth = [(span[0] + 1, span[1] + 1 - 1)
                              for span in triggers]  # 触发词起止列表改成左闭右闭
            args_truth = {i: [] for i in range(self.argument_type_num)}
            for args_name in args:
                s_r_i = self.argument_vocabulary.word2idx[args_name]
                # s_r_i = self.args_s_id[args_name + '_s']
                for span in args[args_name]:
                    self.argument_max_span_len[args_name] = max(
                        span[1] - span[0],
                        self.argument_max_span_len[args_name])
                    args_truth[s_r_i].append((span[0] + 1, span[1] + 1 - 1))
            if type_id != -1:
                datable("data_ids", id)
                datable("type_id", type_id)
                datable("type_vec", type_vec)
                datable("tokens_id", tokens_id)
                datable("token_masks", token_masks)
                datable("t_index", t_index)
                datable("r_pos", r_pos)
                datable("t_m", t_m)
                datable("triggers_truth", triggers_truth)
                datable("args_truth", args_truth)
                datable("head_indexes", head_indexes)
                datable("content", content)
        return datable

    def process_test(self, dataset):
        datable = DataTable()
        for content, index, type, args, occur, triggers, id in \
                tqdm(zip(dataset["content"], dataset["index"], dataset["type"],
                         dataset["args"], dataset["occur"], dataset["triggers"], dataset["id"]),
                     total=len(dataset["content"])):
            tokens_id, is_heads, head_indexes = [], [], []
            # content = list(map(lambda x: str(x), content))
            # words = ['[CLS]'] +content + ['[SEP]']
            # for w in words:
            #     tokens = self.tokenizer.tokenize(w) if w not in ['[CLS]', '[SEP]'] else [w]
            #     tokens_w_id = self.tokenizer.convert_tokens_to_ids(tokens)
            #     # if w in ['[CLS]', '[SEP]']:
            #     #     is_head = [0]
            #     # else:
            #     is_head = [1] + [0] * (len(tokens) - 1)
            #     tokens_id.extend(tokens_w_id)
            #     is_heads.extend(is_head)
            # token_masks = [True] * len(tokens_id) + [False] * (self.max_length - len(tokens_id))
            # token_masks=token_masks[: self.max_length]
            # tokens_id = tokens_id + [0] * (self.max_length - len(tokens_id))
            # tokens_id=tokens_id[: self.max_length]
            # is_heads=is_heads[: self.max_length]
            # for i in range(len(is_heads)):
            #     if is_heads[i]:
            #         head_indexes.append(i)
            # head_indexes = head_indexes + [0] * (self.max_length - len(head_indexes))
            # head_indexes=head_indexes[: self.max_length]
            data_content = [token.lower()
                            for token in content]  # 字符串遍历是一次取一个字,把字放在列表里面
            data_content = list(data_content)  # 再把这个列表强制类型转换一下,继续变成列表
            inputs = self.tokenizer.encode_plus(data_content,
                                                add_special_tokens=True,
                                                max_length=self.max_length,
                                                truncation=True,
                                                padding='max_length')
            tokens_id, segs, token_masks = inputs["input_ids"], inputs[
                "token_type_ids"], inputs['attention_mask']
            head_indexes = list(np.arange(0, sum(token_masks)))
            head_indexes = head_indexes + [0] * (self.max_length -
                                                 len(head_indexes))
            head_indexes = head_indexes[:self.max_length]

            type_vec = np.array([0] * self.trigger_type_num)
            type_id = -1
            if type != "<unk>":
                type_id = self.trigger_vocabulary.word2idx[type]
                for occ in occur:
                    idx = self.trigger_vocabulary.word2idx[occ]
                    type_vec[idx] = 1

            t_m = [0] * self.max_length
            r_pos = list(range(-0, 0)) + [0] * (0 - 0 + 1) + list(
                range(1, self.max_length - 0))
            r_pos = [p + self.max_length for p in r_pos]
            if index is not None:
                span = triggers[index]
                start_idx = span[0] + 1
                end_idx = span[1] + 1 - 1
                r_pos = list(range(
                    -start_idx, 0)) + [0] * (end_idx - start_idx + 1) + list(
                        range(1, self.max_length - end_idx))
                r_pos = [p + self.max_length for p in r_pos]
                t_m = [0] * self.max_length
                t_m[start_idx] = 1
                t_m[end_idx] = 1

            t_index = index

            triggers_truth = [(span[0] + 1, span[1] + 1 - 1)
                              for span in triggers]  # 触发词起止列表改成左闭右闭
            args_truth = {i: [] for i in range(self.argument_type_num)}
            for args_name in args:
                s_r_i = self.argument_vocabulary.word2idx[args_name]
                # s_r_i = self.args_s_id[args_name + '_s']
                for span in args[args_name]:
                    args_truth[s_r_i].append((span[0] + 1, span[1] + 1 - 1))
            if type_id != -1:
                datable("data_ids", id)
                datable("type_id", type_id)
                datable("type_vec", type_vec)
                datable("tokens_id", tokens_id)
                datable("token_masks", token_masks)
                datable("t_index", t_index)
                datable("r_pos", r_pos)
                datable("t_m", t_m)
                datable("triggers_truth", triggers_truth)
                datable("args_truth", args_truth)
                datable("head_indexes", head_indexes)
                datable("content", content)
        return datable

    def get_trigger_vocabulary(self):
        return self.trigger_vocabulary

    def get_argument_vocabulary(self):
        return self.argument_vocabulary