def mce_def(info): # noqa mce_def = MCE() parent = FileSource() parent.mne_info = info parent.output = np.random.rand(info['nchan'], 1) mce_def.parent = parent return mce_def
def inv_model_def(info): # noqa inv_model_def = InverseModel() parent = FileSource() parent.mne_info = info parent.output = np.random.rand(info['nchan'], 1) inv_model_def.parent = parent return inv_model_def
def beamformer_default(info): # noqa beamformer_default = Beamformer() parent = FileSource() parent.mne_info = info parent.output = np.random.rand(info['nchan'], 1) beamformer_default.parent = parent return beamformer_default
def env_extractor(info, data_path): # noqa env_extractor = EnvelopeExtractor() env_extractor.mne_info = info N_SEN = len(info['ch_names']) env_extractor.input = np.random.rand(N_SEN) parent = FileSource(data_path) parent.output = np.random.rand(info['nchan'], 1) parent.mne_info = info env_extractor.parent = parent return env_extractor
def lin_filter(info, data_path): # noqa lin_filter = LinearFilter() lin_filter.mne_info = info N_SEN = len(info['ch_names']) lin_filter.input = np.random.rand(N_SEN) parent = FileSource(data_path) parent.output = np.random.rand(info['nchan'], 1) parent.mne_info = info lin_filter.parent = parent return lin_filter
def coh_computer(info, data_path): # noqa coh_computer = Coherence() coh_computer.mne_info = info N_SEN = len(info['ch_names']) coh_computer.input = np.random.rand(N_SEN) parent = FileSource(data_path) parent.output = np.random.rand(info['nchan'], 1) parent.mne_info = info coh_computer.parent = parent return coh_computer
def ica_rejector(info, data_path): # noqa ica_rejector = ICARejection() ica_rejector.mne_info = info N_SEN = len(info['ch_names']) ica_rejector.input = np.random.rand(N_SEN) parent = FileSource(data_path) parent.output = np.random.rand(info['nchan'], 1) parent.mne_info = info ica_rejector.parent = parent return ica_rejector
def lsl_streamer(info, data_path): # noqa lsl_streamer = LSLStreamOutput() lsl_streamer.mne_info = info N_SEN = len(info['ch_names']) lsl_streamer.input = np.random.rand(N_SEN) parent = FileSource(data_path) parent.output = np.random.rand(info['nchan'], 1) parent.mne_info = info lsl_streamer.parent = parent return lsl_streamer
def signal_viewer(info, data_path): # noqa signal_viewer = SignalViewer() signal_viewer.mne_info = info N_SEN = len(info['ch_names']) signal_viewer.input = np.random.rand(N_SEN) parent = FileSource(data_path) parent.output = np.random.rand(info['nchan'], 1) parent.mne_info = info signal_viewer.parent = parent return signal_viewer
def beamformer(info, fwd_model_path, data_path): # noqa is_adaptive = True beamformer = Beamformer(fwd_path=fwd_model_path, is_adaptive=is_adaptive) beamformer.mne_info = info N_SEN = len(info['ch_names']) beamformer.input = np.random.rand(N_SEN) parent = FileSource(data_path) parent.output = np.random.rand(info['nchan'], 1) parent.mne_info = info beamformer.parent = parent return beamformer
def mne_gcs(info, fwd_model_path, data_path): # noqa snr = 1 mne_gcs = MneGcs(snr=snr, fwd_path=fwd_model_path, seed=0) mne_gcs.mne_info = info N_SEN = len(info['ch_names']) mne_gcs.input = np.random.rand(N_SEN) parent = FileSource(data_path) parent.output = np.random.rand(info['nchan'], 1) parent.mne_info = info mne_gcs.parent = parent return mne_gcs
def file_outputter(info, data_path, tmp_path): # noqa output_path = op.join(tmp_path, 'output.h5') file_outputter = FileOutput(output_path) file_outputter.mne_info = info N_SEN = len(info['ch_names']) file_outputter.input = np.random.rand(N_SEN) parent = FileSource(data_path) parent.output = np.random.rand(info['nchan'], 1) parent.mne_info = info file_outputter.parent = parent return file_outputter
def mce(info, fwd_model_path): # noqa n_comp = 10 print(fwd_model_path) mce = MCE(fwd_model_path, n_comp) mce.mne_info = info N_SEN = len(info['ch_names']) mce.input = np.random.rand(N_SEN) parent = FileSource() parent.output = np.random.rand(info['nchan'], 1) parent.mne_info = info mce.parent = parent return mce
def inv_model(info, fwd_model_path): # noqa snr = 1 method = 'MNE' inv_model = InverseModel( snr=snr, forward_model_path=fwd_model_path, method=method) inv_model.mne_info = info N_SEN = len(info['ch_names']) inv_model.input = np.random.rand(N_SEN) parent = FileSource() parent.output = np.random.rand(info['nchan'], 1) parent.mne_info = info inv_model.parent = parent return inv_model
def preprocessor(info, data_path): # noqa preprocessor = Preprocessing() preprocessor.mne_info = info N_SEN = len(info['ch_names']) preprocessor.input = np.random.rand(N_SEN) parent = FileSource(data_path) parent.output = np.random.rand(info['nchan'], 1) parent.mne_info = info preprocessor.parent = parent app = QCoreApplication(sys.argv) parent.updater = AsyncUpdater(app, parent) return preprocessor
linear_filter.input_node = source linear_filter.initialize() linear_filter.update() # this linear filter should at least remove DC. Thus, new means should be somewhat close to zero means = np.abs(np.mean(linear_filter.output, axis=TIME_AXIS)) mean_max = np.mean(np.max(linear_filter.output, axis=TIME_AXIS)) assert(np.all(means < 0.1 * mean_max)) linear_filter.lower_cutoff = None linear_filter.initialize() linear_filter.update() assert(linear_filter.output is source.output) # Envelope extractor envelope_extractor = EnvelopeExtractor() envelope_extractor.input_node = linear_filter envelope_extractor.initialize() envelope_extractor.update() # TODO: come up with an actual way to test this stuff assert(envelope_extractor.output is not None) from cognigraph.nodes.sources import FileSource source = FileSource(r"C:\Users\evgenii\Downloads\brainvision\Bulavenkova_A_2017-10-24_15-33-18_Rest.vmrk") source.update()