def test_if_pipeline_works_at_all(self): pipeline = Pipeline() pipeline.source = self.input_node for processor_node in self.processor_nodes: pipeline.add_processor(processor_node=processor_node) pipeline.add_output(self.output_node) pipeline.run()
def pipeline(): source = ConcreteSource() processor = ConcreteProcessor() output = ConcreteOutput() pipeline = Pipeline() pipeline.source = source source.add_child(processor) processor.add_child(output) pipeline._processors.append(processor) pipeline._outputs.append(output) return pipeline
import mne from pyqtgraph import QtCore, QtGui import pyqtgraph pyqtgraph.setConfigOption('useOpenGL',True) from cognigraph.pipeline import Pipeline from cognigraph.nodes import sources, processors, outputs from cognigraph import TIME_AXIS from cognigraph.gui.window import GUIWindow import logging app = QtGui.QApplication(sys.argv) pipeline = Pipeline() cur_dir = '/home/dmalt/Code/python/cogni_submodules' test_data_path = cur_dir + '/tests/data/' print(test_data_path) # sim_data_fname = 'raw_sim.fif' data_fname = 'Koleno.fif' data_path = op.join(test_data_path, data_fname) source = sources.FifSource(file_path=data_path) pipeline.source = source # Processors
%gui qt from PyQt5 import QtCore from cognigraph.pipeline import Pipeline from cognigraph.nodes import sources, processors, outputs from cognigraph.gui.window import GUIWindow pipeline = Pipeline() file_path = r"C:\Users\evgenii\Downloads\brainvision\Bulavenkova_A_2017-10-24_15-33-18_Rest.vmrk" pipeline.source = sources.FileSource(file_path=file_path) # linear_filter = processors.LinearFilter(lower_cutoff=0.1, upper_cutoff=40) # pipeline.add_processor(linear_filter) # pipeline.add_processor(processors.MNE(method='MNE')) # pipeline.add_processor(processors.EnvelopeExtractor()) # pipeline.add_output(outputs.BrainViewer()) # pipeline.add_output(outputs.LSLStreamOutput()) # pipeline.initialize_all_nodes() window = GUIWindow(pipeline=pipeline) window.init_ui() window.setWindowFlags(QtCore.Qt.WindowStaysOnTopHint) window.show()
def assemble_pipeline(file_path=None, fwd_path=None, subject=None, subjects_dir=None, inverse_method='mne'): pipeline = Pipeline() source = sources.FileSource(file_path=file_path) source.loop_the_file = True source.MAX_SAMPLES_IN_CHUNK = 10000 pipeline.source = source # ----------------------------- processors ----------------------------- # preprocessing = processors.Preprocessing(collect_for_x_seconds=120) pipeline.add_processor(preprocessing) linear_filter = processors.LinearFilter(lower_cutoff=8.0, upper_cutoff=12.0) pipeline.add_processor(linear_filter) if inverse_method == 'mne': inverse_model = processors.InverseModel(method='MNE', snr=1.0, forward_model_path=fwd_path) # inverse_model = processors.MneGcs(snr=1.0, seed=1000, # forward_model_path=fwd_path) pipeline.add_processor(inverse_model) envelope_extractor = processors.EnvelopeExtractor(0.99) pipeline.add_processor(envelope_extractor) elif inverse_method == 'beamformer': inverse_model = processors.Beamformer( forward_model_path=fwd_path, is_adaptive=True, output_type='activation', forgetting_factor_per_second=0.95) pipeline.add_processor(inverse_model) envelope_extractor = processors.EnvelopeExtractor(0.99) pipeline.add_processor(envelope_extractor) elif inverse_method == 'mce': inverse_model = processors.MCE(forward_model_path=fwd_path, snr=1.0) pipeline.add_processor(inverse_model) envelope_extractor = processors.EnvelopeExtractor(0.995) pipeline.add_processor(envelope_extractor) # ---------------------------------------------------------------------- # # ------------------------------ outputs ------------------------------ # global_mode = outputs.BrainViewer.LIMITS_MODES.GLOBAL brain_viewer = outputs.BrainViewer(limits_mode=global_mode, buffer_length=6, surfaces_dir=None) pipeline.add_output(brain_viewer, parent=envelope_extractor) # roi_average = processors.AtlasViewer(SUBJECT, subjects_dir) # roi_average.parent = inverse_model # pipeline.add_processor(roi_average) # aec = processors.AmplitudeEnvelopeCorrelations( # method=None, # seed=1000 # # method='temporal_orthogonalization', # # method='geometric_correction', # # seed=0 # ) # pipeline.add_processor(aec) # aec.parent = inverse_model # # coh = processors.Coherence( # # method='coh', seed=0) # aec_env = processors.EnvelopeExtractor(0.995) # pipeline.add_processor(aec_env) # seed_viewer = outputs.BrainViewer( # limits_mode=global_mode, buffer_length=6, # surfaces_dir=op.join(subjects_dir, SUBJECT)) # pipeline.add_output(seed_viewer, parent=aec_env) # pipeline.add_output(outputs.LSLStreamOutput()) # signal_viewer = outputs.SignalViewer() # signal_viewer_src = outputs.SignalViewer() # pipeline.add_output(signal_viewer, parent=linear_filter) # pipeline.add_output(signal_viewer_src, parent=roi_average) # con_viewer = outputs.ConnectivityViewer( # surfaces_dir=op.join(subjects_dir, SUBJECT)) # pipeline.add_output(con_viewer, parent=aec) # --------------------------------------------------------------------- # return pipeline
import sys from pyqtgraph import QtCore, QtGui from cognigraph.pipeline import Pipeline from cognigraph.nodes import sources, processors, outputs from cognigraph import TIME_AXIS from cognigraph.gui.window import GUIWindow app = QtGui.QApplication(sys.argv) # BOBE pipeline = Pipeline() file_path = r"/home/evgenii/Downloads/brainvision/Bulavenkova_A_2017-10-24_15-33-18_Rest.vhdr" source = sources.FileSource(file_path=file_path) pipeline.source = source inverse = processors.InverseModel() pipeline.add_processor(inverse) three_dee = outputs.ThreeDeeBrain() pipeline.add_output(three_dee) pipeline.initialize_all_nodes() three_dee.widget.show() source.output = source.data.take(indices=(0,), axis=TIME_AXIS) inverse.update()
%gui qt from pyqtgraph import QtCore from cognigraph.pipeline import Pipeline from cognigraph.nodes import sources, processors, outputs from cognigraph.gui.window import GUIWindow pipeline = Pipeline() file_path = r"C:\Users\evgenii\Downloads\brainvision\Bulavenkova_A_2017-10-24_15-33-18_Rest.vmrk" pipeline.source = sources.BrainvisionSource(file_path=file_path) # linear_filter = processors.LinearFilter(lower_cutoff=0.1, upper_cutoff=40) # pipeline.add_processor(linear_filter) # pipeline.add_processor(processors.InverseModel(method='MNE')) # pipeline.add_processor(processors.EnvelopeExtractor()) # pipeline.add_output(outputs.ThreeDeeBrain()) # pipeline.add_output(outputs.LSLStreamOutput()) # pipeline.initialize_all_nodes() window = GUIWindow(pipeline=pipeline) window.init_ui() window.setWindowFlags(QtCore.Qt.WindowStaysOnTopHint) window.show()
from cognigraph.pipeline import Pipeline from cognigraph.nodes import sources, processors, outputs # from cognigraph import TIME_AXIS from cognigraph.gui.window import GUIWindow import logging import mne mne.set_log_level('WARNING') app = QtWidgets.QApplication(sys.argv) logging.basicConfig(level=logging.INFO, format='%(asctime)s:%(name)-17s:%(levelname)s:%(message)s') logger = logging.getLogger(__name__) pipeline = Pipeline() cur_dir = '/home/dmalt/Code/python/cogni_submodules' test_data_path = cur_dir + '/tests/data/' print(test_data_path) sim_data_fname = 'raw_sim_nobads.fif' # sim_data_fname = 'DF_2018-03-02_11-34-38.edf' # sim_data_fname = 'Koleno.fif' fwd_fname = 'dmalt_custom_mr-fwd.fif' # fwd_fname = 'sample_1005-eeg-ico-4-fwd.fif' # fwd_fname = 'sample_1005-eeg-oct-6-fwd.fif' # fwd_fname = 'DF_2018-03-02_11-34-38-fwd.fif' surf_dir = '/home/dmalt/mne_data/MNE-sample-data/subjects/sample/surf' fwd_path = op.join(test_data_path, fwd_fname)
import sys from pyqtgraph import QtCore, QtGui from cognigraph.pipeline import Pipeline from cognigraph.nodes import sources, processors, outputs from cognigraph import TIME_AXIS from cognigraph.gui.window import GUIWindow app = QtGui.QApplication(sys.argv) pipeline = Pipeline() # file_path = r"/home/dmalt/Code/python/real_eyes/Koleno.eeg" file_path = r"/home/dmalt/Data/cognigraph/data/Koleno.eeg" # vhdr_file_path = r"/home/dmalt/Code/python/real_eyes/Koleno.vhdr" # vhdr_file_path = r"/home/dmalt/Data/cognigraph/data/Koleno.vhdr" # vhdr_file_path = r"/home/dmalt/Data/cognigraph/data/Koleno.fif" fwd_path = r'/home/dmalt/mne_data/MNE-sample-data/MEG/sample/dmalt_custom-fwd.fif' source = sources.FileSource(file_path=file_path) pipeline.source = source # pipeline.source = sources.LSLStreamSource(stream_name='cognigraph-mock-stream') # Processors preprocessing = processors.Preprocessing(collect_for_x_seconds=120) pipeline.add_processor(preprocessing) linear_filter = processors.LinearFilter(lower_cutoff=8.0, upper_cutoff=12.0) pipeline.add_processor(linear_filter) inverse_model = processors.InverseModel(method='MNE',