## LIBRARIES - simple study definitions

# cohort extractor
from cohortextractor import (StudyDefinition, patients)

# dictionaries of STP codes (for dummy data)
from dictionaries import dict_stp

# set the index date
index_date = "2020-01-01"

## STUDY POPULATION

study = StudyDefinition(
    default_expectations={
        "date": {
            "earliest": index_date,
            "latest": "today"
        },  # date range for simulation
        "rate": "uniform",
        "incidence": 1
    },
    population=patients.registered_as_of(index_date),
    stp=patients.registered_practice_as_of(index_date,
                                           returning="stp_code",
                                           return_expectations={
                                               "category": {
                                                   "ratios": dict_stp
                                               },
                                           }))
         "incidence": 0.6,
         "float": {
             "distribution": "normal",
             "mean": 35,
             "stddev": 10
         },
     },
 ),
 # https://github.com/ebmdatalab/tpp-sql-notebook/issues/54
 stp=patients.registered_practice_as_of(
     "2020-03-01",
     returning="stp_code",
     return_expectations={
         "rate": "universal",
         "category": {
             "ratios": {
                 "STP1": 0.5,
                 "STP2": 0.5
             }
         },
     },
 ),
 # https://github.com/ebmdatalab/tpp-sql-notebook/issues/52
 imd=patients.address_as_of(
     "2020-03-01",
     returning="index_of_multiple_deprivation",
     round_to_nearest=100,
     return_expectations={
         "rate": "universal",
         "category": {
             "ratios": {
     #return_expectations= { "incidence": 0.6 },),
     return_expectations={
         "category": {
             "ratios": {
                 "0": 0.5,
                 "1": 0.5
             }
         },
     },
 ),
 stp=patients.registered_practice_as_of(
     "index_date",
     returning="stp_code",
     return_expectations={
         "category": {
             "ratios": {
                 "STP1": 0.5,
                 "STP2": 0.5
             }
         },
     },
 ),
 first_dose=patients.with_these_clinical_events(
     first_dose_code,
     returning="binary_flag",
     between=["index_date", "index_date + 1 month"],
     return_expectations={"incidence": 0.4}),
 second_dose=patients.with_these_clinical_events(
     second_dose_code,
     returning="binary_flag",
     between=["index_date", "index_date + 1 month"],
     return_expectations={"incidence": 0.4}),
     return_expectations={
         "rate": "universal",
         "category": {
             "ratios": {
                 "M": 0.49,
                 "F": 0.5,
                 "U": 0.01
             }
         },
     }),
 practice=patients.registered_practice_as_of("index_date",
                                             returning="pseudo_id",
                                             return_expectations={
                                                 "int": {
                                                     "distribution":
                                                     "normal",
                                                     "mean": 25,
                                                     "stddev": 5
                                                 },
                                                 "incidence": 0.5
                                             }),
 region=patients.registered_practice_as_of(
     "index_date",
     returning="nuts1_region_name",
     return_expectations={
         "category": {
             "ratios": {
                 "North East": 0.1,
                 "North West": 0.1,
                 "Yorkshire and the Humber": 0.1,
                 "East Midlands": 0.1,
            },
        },
    ),

    # GEOGRAPHIC REGION CALLED STP
    stp=patients.registered_practice_as_of(
        "2019-02-01",
        returning="stp_code",
        return_expectations={
            "rate": "universal",
            "category": {
                "ratios": {
                    "STP1": 0.1,
                    "STP2": 0.1,
                    "STP3": 0.1,
                    "STP4": 0.1,
                    "STP5": 0.1,
                    "STP6": 0.1,
                    "STP7": 0.1,
                    "STP8": 0.1,
                    "STP9": 0.1,
                    "STP10": 0.1,
                }
            },
        },
    ),

    # ETHNICITY IN 6 CATEGORIES
    ethnicity=patients.with_these_clinical_events(
        ethnicity_codes,
        returning="category",
            },
        },
    ),

    # GEOGRAPHIC REGION CALLED STP
    stp=patients.registered_practice_as_of(
        "2020-02-01",
        returning="stp_code",
        return_expectations={
            "rate": "universal",
            "category": {
                "ratios": {
                    "STP1": 0.1,
                    "STP2": 0.1,
                    "STP3": 0.1,
                    "STP4": 0.1,
                    "STP5": 0.1,
                    "STP6": 0.1,
                    "STP7": 0.1,
                    "STP8": 0.1,
                    "STP9": 0.1,
                    "STP10": 0.1,
                }
            },
        },
    ),

    # OTHER REGION
    region=patients.registered_practice_as_of(
        "2020-02-01",
        returning="nuts1_region_name",
Exemple #7
0
         "incidence": 0.6,
         "float": {
             "distribution": "normal",
             "mean": 120,
             "stddev": 10
         },
     },
 ),
 # https://github.com/ebmdatalab/tpp-sql-notebook/issues/54
 stp=patients.registered_practice_as_of(
     "index_date",
     returning="stp_code",
     return_expectations={
         "rate": "universal",
         "category": {
             "ratios": {
                 "STP1": 0.5,
                 "STP2": 0.5
             }
         },
     },
 ),
 msoa=patients.registered_practice_as_of(
     "index_date",
     returning="msoa_code",
     return_expectations={
         "rate": "universal",
         "category": {
             "ratios": {
                 "MSOA1": 0.5,
                 "MSOA2": 0.5
Exemple #8
0
         "latest": "today"
     },
     "rate": "uniform",
 },
 index_date="2020-01-01",
 population=patients.registered_with_one_practice_between(
     "index_date", "index_date"),
 region=patients.registered_practice_as_of(
     "index_date",
     returning="nuts1_region_name",
     return_expectations={
         "category": {
             "ratios": {
                 "North East": 0.1,
                 "North West": 0.1,
                 "Yorkshire and the Humber": 0.1,
                 "East Midlands": 0.1,
                 "West Midlands": 0.1,
                 "East of England": 0.1,
                 "London": 0.2,
                 "South East": 0.2,
             }
         },
         "incidence": 0.8
     }),
 sex=patients.sex(return_expectations={
     "rate": "universal",
     "category": {
         "ratios": {
             "M": 0.49,
             "F": 0.51
         }
Exemple #9
0
        chronic_liver_disease_codes,
        returning="binary_flag",
        return_expectations={
            "incidence": 1.0,
            "date": {
                "earliest": "1950-01-01",
                "latest": "index_date"
            },
        },
    ),
    stp=patients.registered_practice_as_of(
        "index_date",
        returning="stp_code",
        return_expectations={
            "rate": "universal",
            "category": {
                "ratios": {
                    "STP1": 1.0
                }
            },
        },
    ),
)

measures = [
    Measure(
        id="liver_disease_by_stp",
        numerator="has_chronic_liver_disease",
        denominator="population",
        group_by="stp",
        small_number_suppression=True,
    ),
Exemple #10
0
                 "2": 0.2,
                 "3": 0.2,
                 "4": 0.2,
                 "5": 0.2
             }
         },
         "incidence": 0.75,
     },
 ),
 # practice pseudo id
 practice_id=patients.registered_practice_as_of(
     campaign_start,  # day before vaccine campaign start
     returning="pseudo_id",
     return_expectations={
         "int": {
             "distribution": "normal",
             "mean": 1000,
             "stddev": 100
         },
         "incidence": 1,
     },
 ),
 # stp is an NHS administration region based on geography
 stp=patients.registered_practice_as_of(
     campaign_start,
     returning="stp_code",
     return_expectations={
         "rate": "universal",
         "category": {
             "ratios": {
                 "STP1": 0.1,
                 "STP2": 0.1,
# Import codelists

from codelists import *
from datetime import date


start_date = "2020-12-07"
end_date = "2021-02-01"
# Specifiy study definition

study = StudyDefinition(
    default_expectations={
        "date": {"earliest": start_date, "latest": end_date},
        "rate": "exponential_increase",
        "incidence": 0.1,
    },

    population=patients.registered_as_of(start_date),


    practice=patients.registered_practice_as_of(
        start_date,
        returning="pseudo_id",
        return_expectations={
            "int": {"distribution": "normal", "mean": 25, "stddev": 5}, "incidence": 0.5}
    ),

    
)
        (NOT died) AND
        (registered)
        """,
        died=patients.died_from_any_cause(on_or_before=index_date,
                                          returning="binary_flag"),
        registered=patients.registered_as_of(index_date),
        age=patients.age_as_of(index_date),
    ),

    ### geographic/administrative groups
    practice=patients.registered_practice_as_of(
        index_date,
        returning="pseudo_id",
        return_expectations={
            "int": {
                "distribution": "normal",
                "mean": 100,
                "stddev": 20
            }
        },
    ),
    stp=patients.registered_practice_as_of(
        index_date,
        returning="stp_code",
        return_expectations={
            "category": {
                "ratios": dict_stp
            },
        },
    ),
    cholesterol=patients.with_these_clinical_events(