import collect from config import CONFIG import analyze import visualize if __name__ == '__main__': # 데이터 수집(collectino) collect.crawling_tourspot_visitor(district=CONFIG['district'], **CONFIG['common']) for country in CONFIG['countries']: collect.crawling_foreign_visitor(country, **CONFIG['common']) # 데이터 분석(analyze)
import collect import analyze import visualize from config import CONFIG if __name__ == '__main__': resultfiles = dict() #collect resultfiles['tourspot_visitor'] = collect.crawling_tourspot_visitor( district=CONFIG['district'], # start_year=CONFIG['common']['start_year'], # end_year=CONFIG['common']['end_year'] **CONFIG['common']) resultfiles['foreign_visitor'] = [] for country in CONFIG['countries']: rf = collect.crawling_foreign_visitor(country, **CONFIG['common']) resultfiles['foreign_visitor'].append(rf) # # 1. analysis and visualize # result_analysis = analyze.analysis_correlation(resultfiles) # print(result_analysis) # # # 2. analysis and visualize # visualize.graph_scatter(result_analysis) result_analysis = analyze.analysis_correlation_by_tourspot( resultfiles) # 장소별로 상관계수 구하기기 visualize.graph_scatter_2(result_analysis)
import collect import collect import analyze import visualize from config import CONFIG if __name__ == '__main__': resultfiles = dict() #딕션만들고 #collect resultfiles['tourspot_visitor'] = collect.crawling_tourspot_visitor( #딕션에저장 district=CONFIG['district'], #config에 있는 지역 **CONFIG['common']) #커먼에 이쓴 속성을 불러옴,common= 공통적인 속성을 커먼이라는 딕셔너리로 묶음 #start_year= CONFIG ['common']['start_year'], #end_year= CONFIG['common']['end_year']) resultfiles['foreign_visitor'] = [] for country in CONFIG['countries']: rf = collect.crawling_foreign_visitor(country, **CONFIG['common']) #rf로 받음 resultfiles['foreign_visitor'].append(rf) #rf를 resultfile에 추가 # 1.analysis and visulize #result_analysis=analyze.analysis_correlation(resultfiles) # print(result_analysis) #print(result_analysis) #visualize #visualize.graph_scatter(result_analysis)
import collect import analyze import visualize from config import CONFIG import pandas as pd import matplotlib.pyplot as plt if __name__ == '__main__': resultfiles = dict() #collect resultfiles['tourspot_visitor'] = collect.crawling_tourspot_visitor( district=CONFIG['district'], **CONFIG['common']) resultfiles['foreign_visitor'] = [] for country in CONFIG['countries']: rf = collect.crawling_foreign_visitor(country, **CONFIG['common']) resultfiles['foreign_visitor'].append(rf) # 1. analysis and visualize # result_analysis = analyze.analysis_correlation(resultfiles) # visualize.graph_scatter(result_analysis) # 2. analysis and visualize result_analysis = analyze.analysis_correlation_by_tourspot(resultfiles) graph_table = pd.DataFrame(result_analysis, columns=['tourspot', 'r_중국', 'r_일본', 'r_미국']) graph_table = graph_table.set_index('tourspot') graph_table.plot(kind='bar')
import collect if __name__ == '__main__': collect.crawling_tourspot_visitor(district='서울특별시', start_year=2017, end_year=2017)
import collect import analyze import visualize from config import CONFIG if __name__ == '__main__': resultfiles = {} resultfiles['tourspot_visitor'] = [] resultfiles['foreign_visitor'] = [] # collection returnedFilename = collect.crawling_tourspot_visitor( district=CONFIG['district'], **CONFIG['common']) resultfiles['tourspot_visitor'].append(returnedFilename) for country in CONFIG['countries']: returnedFilename = collect.crawling_foreign_visitor(country=country, **CONFIG['common']) resultfiles['foreign_visitor'].append(returnedFilename) # analysis results = analyze.analysis_correlation(resultfiles=resultfiles) # visualize for result in results: print(result) visualize.graph_scatter(results, showgraph=False) # 2. analysis & vsualization result_analysis = analyze.analysis_correlation_by_tourspot( resultfiles=resultfiles)
import collect from config import CONFIG if __name__ == '__main__': #collect collect.crawling_tourspot_visitor( district=CONFIG['district'], **CONFIG['common'] #CONFIG['common']['start_year'] 가 가장 무난 딕셔너리로 보내는데 하나로 보내고 싶다면 #딕셔너리 형태로 ? ) for country in CONFIG['countries']: collect.crawling_foreign_visitor(country, **CONFIG['common']) #analysis #visualize
import collect import analyze import visualize import pandas as pd import matplotlib.pyplot as plt from config import CONFIG if __name__== '__main__': resultfiles = dict() #collect resultfiles['tourspot_visitor'] = collect.crawling_tourspot_visitor( # 서울특별시 데이터 생성후 파일만들기 district=CONFIG['district'], **CONFIG['common']) resultfiles['foreign_visitor'] = [] for country in CONFIG['countries']: rf = collect.crawling_foreign_visitor(country, **CONFIG['common']) # 외국방문 데이터 생성후 파일만들기 resultfiles['foreign_visitor'].append(rf) # 1. analysis and visualize result_analysis = analyze.analysis_correlation(resultfiles) visualize.graph_scatter(result_analysis) # 2. analysis and visualize result_analysis = analyze.analysis_correlation_by_tourspot(resultfiles) print("result_analysis === " , result_analysis) graph_table = pd.DataFrame(result_analysis, columns=['tourspot', 'r_중국', 'r_일본', 'r_미국']) print("graph_table === ", graph_table) graph_table = graph_table.set_index('tourspot')