def test_array_of_objects(): o = {"foo": [{"bar": "baz"}]} assert blueprint(o) == O({ ".foo": "array", ".foo[]": "object", ".foo[].bar": "string" })
def draw_trend(): # plot style style = np.random.choice(plt.style.available); print(style); plt.style.use('grayscale') # [u'dark_background', u'bmh', u'grayscale', u'ggplot', u'fivethirtyeight'] # plot setting mpl.rcParams['mathtext.fontset'] = 'stix' mpl.rcParams['font.family'] = 'STIXGeneral' mpl.rcParams['legend.fontsize'] = 11 # mpl.rcParams['legend.family'] = 'Times New Roman' mpl.rcParams['font.family'] = ['Times New Roman'] mpl.rcParams['font.size'] = 11.0 # mpl.style.use('classic') font = {'family' : 'Times New Roman', #'serif', 'color' : 'darkblue', 'weight' : 'normal', 'size' : 11,} textfont = {'family' : 'Times New Roman', #'serif', 'color' : 'darkblue', 'weight' : 'normal', 'size' : 9,} df_profiles = pd.read_csv(r"./algorithm.dat", na_values = ['1.#QNAN', '-1#INF00', '-1#IND00']) df_info = pd.read_csv(r"./info.dat", na_values = ['1.#QNAN', '-1#INF00', '-1#IND00']) # df_profiles["rpm_cmd"]=df_profiles["ACM.rpm_cmd"] # df_profiles["rpm_mes"]=df_profiles["ACM.rpm_cmd"]-df_profiles["e_omega"] #print(df_profiles.keys()) no_samples = df_profiles.shape[0] no_traces = df_profiles.shape[1] print(df_info, 'Simulated time: %g s.'%(no_samples * df_info['TS'].values[0] * df_info['DOWN_SAMPLE'].values[0]), 'Key list:', sep='\n') for key in df_profiles.keys(): print('\t', key) time = np.arange(1, no_samples+1) * df_info['DOWN_SAMPLE'].values[0] * df_info['TS'].values[0] ax_list = [] for i in range(0, no_traces, 6): ax_list += list(get_axis((1,6))) for idx, key in enumerate(df_profiles.keys()): plot_it(ax_list[idx], key, O([ (str(idx), df_profiles[key]), # (str(idx), df_profiles[key]), ]),time,font) #print(idx,key) # ax_list[12].plot(time,df_profiles["rpm_mes"],color="red") plt.show()
ax.plot(time, v, '-', lw=1) else: # ax.plot(time, v, '-', lw=2, label=k) ax.plot(time, v, '-', lw=1) # ax.legend(loc='lower right', shadow=True) # ax.legend(bbox_to_anchor=(1.08,0.5), borderaxespad=0., loc='center', shadow=True) ax.set_ylabel(ylabel, fontdict=font) # ax.set_xlim(0,35) # shared x # ax.set_ylim(0.85,1.45) time = np.arange( 1, no_samples + 1) * df_info['DOWN_SAMPLE'].values[0] * df_info['TS'].values[0] ax_list = [] for i in range(0, no_traces, 5): ax_list += list(get_axis((1, 5))) for idx, key in enumerate(df_profiles.keys()): plot_it( ax_list[idx], key, O([ (str(idx), df_profiles[key]), # (str(idx), df_profiles[key]), ])) plt.show() quit()
print('\t', key) # print all key of the data ,which is the first row string in data file # the value of key is corresponding list time = np.arange(1, no_samples+1) * df_info['WRITE_PER_TIME'].values[0] ax_list = [] # for i in range(0, no_traces, 2): # for i in range(1, 101,1) print from 1 to 101 # ax_list += list(get_axis((1,2))) # add axis list to ax_list for i in range(0, no_traces): # for i in range(1, 101,1) print from 1 to 101 ax_list.append(get_axis()) #ax_list.append(get_axis(1,1)) # add axis list to ax_list for ID_x, key in enumerate(df_profiles.keys()): # enumerate() is utilized to give num for every key plot_it(ax_list[ID_x], key, O([ (str(ID_x), df_profiles[key]), # (str(idx), df_profiles[key]), ]), time) # input("Wait for key") # time.sleep(0.05) # wait for 0.05 second # fig.savefig('figure_name.png') must be placed before plt.show #fig.savefig('%s.tif',ylabel) # the final direction in the script to creat the defined figure plt.show() # do some stuff in script variable = input('input something!: ') quit()
def test_string(): assert blueprint({"foo": "bar"}) == O({".foo": "string"})
def test_array(): o = {"foo": [1, 2, 3]} assert blueprint(o) == O({".foo": "array", ".foo[]": "number"})
def test_object(): o = {"foo": {"bar": "baz"}} assert blueprint(o) == O({".foo": "object", ".foo.bar": "string"})
def test_boolean(): assert blueprint({"foo": True}) == O({".foo": "boolean"})
def test_number(): assert blueprint({"foo": 1}) == O({".foo": "number"}) assert blueprint({"foo": 1.1}) == O({".foo": "number"})