Exemple #1
0
def _get_installed_language_packs():
    """
    On-disk method to show currently installed languages and meta data.
    """

    # There's always English...
    installed_language_packs = [{
        'code': 'en',
        'software_version': SHORTVERSION,
        'language_pack_version': 0,
        'percent_translated': 100,
        'subtitle_count': 0,
        'name': 'English',
        'native_name': 'English',
    }]

    # Loop through locale folders
    for locale_dir in settings.LOCALE_PATHS:
        if not os.path.exists(locale_dir):
            continue

        # Loop through folders in each locale dir
        # This is idiotic, it just assumes that every directory / file is
        # a valid language code
        for django_disk_code in os.listdir(locale_dir):

            # Skip if it's a file
            if not os.path.isdir(os.path.join(locale_dir, django_disk_code)):
                continue

            # Inside each folder, read from the JSON file - language name, % UI trans, version number
            try:
                # Get the metadata
                metadata_filepath = os.path.join(
                    locale_dir, django_disk_code,
                    "%s_metadata.json" % lcode_to_ietf(django_disk_code))
                lang_meta = softload_json(metadata_filepath, raises=True)

                logging.debug("Found language pack %s" % (django_disk_code))
            except IOError as e:
                if e.errno == errno.ENOENT:
                    logging.info("Ignoring non-language pack %s in %s" %
                                 (django_disk_code, locale_dir))
                else:
                    logging.error("Error reading %s metadata (%s): %s" %
                                  (django_disk_code, metadata_filepath, e))
                continue

            installed_language_packs.append(lang_meta)

    sorted_list = sorted(installed_language_packs,
                         key=lambda m: m['name'].lower())
    return OrderedDict([(lcode_to_ietf(val["code"]), val)
                        for val in sorted_list])
Exemple #2
0
    def handle(self, *args, **options):
        if settings.CENTRAL_SERVER:
            raise CommandError("Run this command on the distributed server only.")

        # Load videos
        video_sizes = softload_json(REMOTE_VIDEO_SIZE_FILEPATH, logger=logging.debug)

        # Query current files
        all_video_filepaths = glob.glob(os.path.join(settings.CONTENT_ROOT, "*.mp4"))
        logging.info("Querying sizes for %d video(s)." % len(all_video_filepaths))

        # Get all current sizes
        for video_filepath in all_video_filepaths:
            youtube_id = os.path.splitext(os.path.basename(video_filepath))[0]
            # Set to max, so that local compressed videos will not affect things.
            video_sizes[youtube_id] = max(video_sizes.get(youtube_id, 0), os.path.getsize(video_filepath))

        # Sort results
        video_sizes = OrderedDict([(key, video_sizes[key]) for key in sorted(video_sizes.keys())])

        logging.info("Saving results to disk.")
        ensure_dir(os.path.dirname(REMOTE_VIDEO_SIZE_FILEPATH))
        with open(REMOTE_VIDEO_SIZE_FILEPATH, "w") as fp:
            json.dump(video_sizes, fp, indent=2)
Exemple #3
0
    def get_organizations(self):
        """
        Return all organizations that this user manages.

        If this user is a super-user, then the headless org will be appended at the end.
        """
        orgs = OrderedDict()  # no dictionary comprehensions, so have to loop
        for org in self.user.organization_set.all().order_by(
                "name"):  # add in order queries (alphabetical?)
            orgs[org.pk] = org

        # Add a headless organization for superusers, containing
        #   any headless zones.
        # Make sure this is at the END of the list, so it is clearly special.
        if self.user.is_superuser:
            headless_org = Organization.get_or_create_headless_organization(
                refresh_zones=True)
            orgs[headless_org.pk] = headless_org

        return orgs
Exemple #4
0
def _get_user_usage_data(users,
                         groups=None,
                         period_start=None,
                         period_end=None,
                         group_id=None):
    """
    Returns facility user data, within the given date range.
    """

    groups = groups or set([user.group for user in users])

    # compute period start and end
    # Now compute stats, based on queried data
    num_exercises = len(get_node_cache('Exercise'))
    user_data = OrderedDict()
    group_data = OrderedDict()

    # Make queries efficiently
    exercise_logs = ExerciseLog.objects.filter(user__in=users, complete=True)
    video_logs = VideoLog.objects.filter(user__in=users)
    login_logs = UserLogSummary.objects.filter(user__in=users)

    # filter results
    if period_start:
        exercise_logs = exercise_logs.filter(
            completion_timestamp__gte=period_start)
        video_logs = video_logs.filter(completion_timestamp__gte=period_start)
        login_logs = login_logs.filter(start_datetime__gte=period_start)
    if period_end:
        exercise_logs = exercise_logs.filter(
            completion_timestamp__lte=period_end)
        video_logs = video_logs.filter(completion_timestamp__lte=period_end)
        login_logs = login_logs.filter(end_datetime__lte=period_end)

    # Force results in a single query
    exercise_logs = list(exercise_logs.values("exercise_id", "user__pk"))
    video_logs = list(video_logs.values("video_id", "user__pk"))
    login_logs = list(
        login_logs.values("activity_type", "total_seconds", "user__pk"))

    for user in users:
        user_data[user.pk] = OrderedDict()
        user_data[user.pk]["id"] = user.pk
        user_data[user.pk]["first_name"] = user.first_name
        user_data[user.pk]["last_name"] = user.last_name
        user_data[user.pk]["username"] = user.username
        user_data[user.pk]["group"] = user.group

        user_data[user.pk][
            "total_report_views"] = 0  #report_stats["count__sum"] or 0
        user_data[
            user.pk]["total_logins"] = 0  # login_stats["count__sum"] or 0
        user_data[user.pk][
            "total_hours"] = 0  #login_stats["total_seconds__sum"] or 0)/3600.

        user_data[user.pk]["total_exercises"] = 0
        user_data[user.pk]["pct_mastery"] = 0.
        user_data[user.pk]["exercises_mastered"] = []

        user_data[user.pk]["total_videos"] = 0
        user_data[user.pk]["videos_watched"] = []

    for elog in exercise_logs:
        user_data[elog["user__pk"]]["total_exercises"] += 1
        user_data[elog["user__pk"]]["pct_mastery"] += 1. / num_exercises
        user_data[elog["user__pk"]]["exercises_mastered"].append(
            elog["exercise_id"])

    for vlog in video_logs:
        user_data[vlog["user__pk"]]["total_videos"] += 1
        user_data[vlog["user__pk"]]["videos_watched"].append(vlog["video_id"])

    for llog in login_logs:
        if llog["activity_type"] == UserLog.get_activity_int("coachreport"):
            user_data[llog["user__pk"]]["total_report_views"] += 1
        elif llog["activity_type"] == UserLog.get_activity_int("login"):
            user_data[llog["user__pk"]]["total_hours"] += (
                llog["total_seconds"]) / 3600.
            user_data[llog["user__pk"]]["total_logins"] += 1

    for group in list(groups) + [None] * (group_id == None or _(group_id) == _(
            "Ungrouped")):  # None for ungrouped, if no group_id passed.
        group_pk = getattr(group, "pk", None)
        group_name = getattr(group, "name", _("Ungrouped"))
        group_data[group_pk] = {
            "id": group_pk,
            "name": group_name,
            "total_logins": 0,
            "total_hours": 0,
            "total_users": 0,
            "total_videos": 0,
            "total_exercises": 0,
            "pct_mastery": 0,
        }

    # Add group data.  Allow a fake group "Ungrouped"
    for user in users:
        group_pk = getattr(user.group, "pk", None)
        group_data[group_pk]["total_users"] += 1
        group_data[group_pk]["total_logins"] += user_data[
            user.pk]["total_logins"]
        group_data[group_pk]["total_hours"] += user_data[
            user.pk]["total_hours"]
        group_data[group_pk]["total_videos"] += user_data[
            user.pk]["total_videos"]
        group_data[group_pk]["total_exercises"] += user_data[
            user.pk]["total_exercises"]

        total_mastery_so_far = (group_data[group_pk]["pct_mastery"] *
                                (group_data[group_pk]["total_users"] - 1) +
                                user_data[user.pk]["pct_mastery"])
        group_data[group_pk][
            "pct_mastery"] = total_mastery_so_far / group_data[group_pk][
                "total_users"]

    if len(group_data) == 1 and group_data.has_key(None):
        if not group_data[None]["total_users"]:
            del group_data[None]

    return (user_data, group_data)
Exemple #5
0
def show_deployment_cms(request):
    """
    This does 3 queries:
    * Facilities, organized by organization.
    * Devices, organized by organization.
    * Organizations, organized by organization.

    It then combines results from these 3 queries to create a list of:
    * All Users that have facilities, have devices but no facilities, and have no devices.
    """

    # Query 1: Organizations
    deployment_data = OrderedDict([(org["id"], {
        "org_name": org["name"],
        "owner": org["owner__username"],
        "total_users": 0,
        "sync_sessions": 0,
        "models_synced": 0,
    }) for org in list(
        Organization.objects.values("id", "name", "owner__username"))])

    # Query 2: Organizations with users
    for org in list(
            Organization.objects.values("id", "users__username",
                                        "users__first_name",
                                        "users__last_name")):
        org_id = org["id"]
        deployment_data[org_id]["users"] = deployment_data[org_id].get(
            "users", {})
        deployment_data[org_id]["users"][org["users__username"]] = {
            "first_name": org["users__first_name"],
            "last_name": org["users__last_name"],
            "email": org["users__username"],
        }

    # Query 3: Organizations with devices
    device_data = DeviceZone.objects \
        .annotate( \
            n_sessions=Count("device__client_sessions"), \
            n_models=Sum("device__client_sessions__models_uploaded")) \
        .values("n_sessions", "n_models", "device__id", "device__name", "zone__id", "zone__name", "zone__organization__id") \
        .order_by("zone__name", "-n_models", "-n_sessions")

    for devzone in list(device_data):
        org_id = devzone["zone__organization__id"]
        if not org_id:
            continue
        deployment_data[org_id]["devices"] = deployment_data[org_id].get(
            "devices", {})
        deployment_data[org_id]["devices"][devzone["device__id"]] = {
            "id": devzone["device__id"],
            "name": devzone["device__name"],
            "zone_name": devzone["zone__name"],
            "zone_id": devzone["zone__id"],
            "models_synced": devzone["n_models"],
            "sync_sessions": devzone["n_sessions"],
        }
        deployment_data[org_id]["models_synced"] += devzone["n_models"] or 0
        deployment_data[org_id]["sync_sessions"] += devzone["n_sessions"] or 0

    # Query 4: Organizations with facilities
    facilities_by_org = list(Facility.objects \
        .filter(signed_by__devicemetadata__is_demo_device=False) \
        .annotate( \
            n_actual_users=Count("facilityuser")) \
        .values( \
            "n_actual_users", \
            "name", "address", \
            "latitude", "longitude", \
            "contact_email", "contact_name", \
            "user_count", \
            "zone_fallback__organization__id", \
            "signed_by__devicezone__zone__organization__id",) \
        .order_by("-n_actual_users"))

    for fac in list(facilities_by_org):
        org_id = fac["signed_by__devicezone__zone__organization__id"] or fac[
            "zone_fallback__organization__id"]
        deployment_data[org_id]["facilities"] = deployment_data[org_id].get(
            "facilities", {})
        deployment_data[org_id]["facilities"][fac["name"]] = fac
        deployment_data[org_id]["total_users"] += fac["n_actual_users"] or 0

    # Combine all data into a single data store.
    sort_fn = lambda dep: (dep["total_users"], dep["models_synced"], dep[
        "sync_sessions"])
    paged_data, page_urls = paginate_data(
        request,
        sorted(deployment_data.values(), key=sort_fn, reverse=True),
        page=int(request.GET.get("cur_page", 1)),
        per_page=int(request.GET.get("per_page", 25)))

    return {
        "pages": paged_data,
        "page_urls": page_urls,
        "title": _("Deployments CMS"),
    }
Exemple #6
0
def zone_management(request, zone_id="None"):
    context = control_panel_context(request, zone_id=zone_id)
    own_device = Device.get_own_device()

    if not context["zone"] and (zone_id != "None" or own_device.get_zone() or settings.CENTRAL_SERVER):
        raise Http404()  # on distributed server, we can make due if they're not registered.

    # Denote the zone as headless or not
    if context["zone"]:
        is_headless_zone = re.search(r"Zone for public key ", context["zone"].name)
    else:
        is_headless_zone = False

    # Accumulate device data
    device_data = OrderedDict()
    if context["zone"]:
        devices = Device.objects.filter(devicezone__zone=context["zone"])
    else:
        devices = Device.objects.filter(devicemetadata__is_own_device=True)

    for device in list(devices.order_by("devicemetadata__is_demo_device", "name")):

        user_activity = UserLogSummary.objects.filter(device=device)
        sync_sessions = SyncSession.objects.filter(client_device=device)
        if (
            not settings.CENTRAL_SERVER and device.id != own_device.id
        ):  # Non-local sync sessions unavailable on distributed server
            sync_sessions = None

        exercise_activity = ExerciseLog.objects.filter(signed_by=device)

        device_data[device.id] = {
            "name": device.name or device.id,
            "num_times_synced": sync_sessions.count() if sync_sessions is not None else None,
            "last_time_synced": sync_sessions.aggregate(Max("timestamp"))["timestamp__max"]
            if sync_sessions is not None
            else None,
            "is_demo_device": device.get_metadata().is_demo_device,
            "is_own_device": device.get_metadata().is_own_device and not settings.CENTRAL_SERVER,
            "last_time_used": exercise_activity.order_by("-completion_timestamp")[0:1]
            if user_activity.count() == 0
            else user_activity.order_by("-last_activity_datetime", "-end_datetime")[0],
            "counter": device.get_counter_position(),
            "is_registered": device.is_registered(),
        }

    # Accumulate facility data
    facility_data = OrderedDict()
    if context["zone"]:
        facilities = Facility.objects.by_zone(context["zone"])
    else:
        facilities = Facility.objects.all()
    for facility in list(facilities.order_by("name")):

        user_activity = UserLogSummary.objects.filter(user__facility=facility)
        exercise_activity = ExerciseLog.objects.filter(user__facility=facility)
        facility_data[facility.id] = {
            "name": facility.name,
            "num_users": FacilityUser.objects.filter(facility=facility).count(),
            "num_groups": FacilityGroup.objects.filter(facility=facility).count(),
            "id": facility.id,
            "meta_data_in_need": check_meta_data(facility),
            "last_time_used": exercise_activity.order_by("-completion_timestamp")[0:1]
            if user_activity.count() == 0
            else user_activity.order_by("-last_activity_datetime", "-end_datetime")[0],
        }

    context.update(
        {
            "is_headless_zone": is_headless_zone,
            "facilities": facility_data,
            "missing_meta": any([facility["meta_data_in_need"] for facility in facility_data.values()]),
            "devices": device_data,
            "upload_form": UploadFileForm(),
            "own_device_is_trusted": Device.get_own_device().get_metadata().is_trusted,
        }
    )
    if not settings.CENTRAL_SERVER:
        context["base_template"] = "distributed/base_manage.html"

    return context
Exemple #7
0
def compute_data(data_types, who, where):
    """
    Compute the data in "data_types" for each user in "who", for the topics selected by "where"

    who: list of users
    where: topic_path
    data_types can include:
        pct_mastery
        effort
        attempts
    """

    # None indicates that the data hasn't been queried yet.
    #   We'll query it on demand, for efficiency
    topics = None
    exercises = None
    videos = None

    # Initialize an empty dictionary of data, video logs, exercise logs, for each user
    data = OrderedDict(zip([w.id for w in who], [dict() for i in range(len(who))]))  # maintain the order of the users
    vid_logs = dict(zip([w.id for w in who], [[] for i in range(len(who))]))
    ex_logs = dict(zip([w.id for w in who], [[] for i in range(len(who))]))
    if UserLog.is_enabled():
        activity_logs = dict(zip([w.id for w in who], [[] for i in range(len(who))]))

    # Set up queries (but don't run them), so we have really easy aliases.
    #   Only do them if they haven't been done yet (tell this by passing in a value to the lambda function)
    # Topics: topics.
    # Exercises: names (ids for ExerciseLog objects)
    # Videos: video_id (ids for VideoLog objects)

    # This lambda partial creates a function to return all items with a particular path from the NODE_CACHE.
    search_fun_single_path = partial(lambda t, p: t["path"].startswith(p), p=tuple(where))
    # This lambda partial creates a function to return all items with paths matching a list of paths from NODE_CACHE.
    search_fun_multi_path = partial(lambda ts, p: any([t["path"].startswith(p) for t in ts]),  p=tuple(where))
    # Functions that use the functions defined above to return topics, exercises, and videos based on paths.
    query_topics = partial(lambda t, sf: t if t is not None else [t[0]["id"] for t in filter(sf, get_node_cache('Topic').values())], sf=search_fun_single_path)
    query_exercises = partial(lambda e, sf: e if e is not None else [ex[0]["id"] for ex in filter(sf, get_node_cache('Exercise').values())], sf=search_fun_multi_path)
    query_videos = partial(lambda v, sf: v if v is not None else [vid[0]["id"] for vid in filter(sf, get_node_cache('Video').values())], sf=search_fun_multi_path)

    # No users, don't bother.
    if len(who) > 0:

        # Query out all exercises, videos, exercise logs, and video logs before looping to limit requests.
        # This means we could pull data for n-dimensional coach report displays with the same number of requests!
        # Note: User activity is polled inside the loop, to prevent possible slowdown for exercise and video reports.
        exercises = query_exercises(exercises)

        videos = query_videos(videos)

        if exercises:
            ex_logs = query_logs(data.keys(), exercises, "exercise", ex_logs)

        if videos:
            vid_logs = query_logs(data.keys(), videos, "video", vid_logs)

        for data_type in (data_types if not hasattr(data_types, "lower") else [data_types]):  # convert list from string, if necessary
            if data_type in data[data.keys()[0]]:  # if the first user has it, then all do; no need to calc again.
                continue

            #
            # These are summary stats: you only get one per user
            #
            if data_type == "pct_mastery":

                # Efficient query out, spread out to dict
                for user in data.keys():
                    data[user][data_type] = 0 if not ex_logs[user] else 100. * sum([el['complete'] for el in ex_logs[user]]) / float(len(exercises))

            elif data_type == "effort":
                if "ex:attempts" in data[data.keys()[0]] and "vid:total_seconds_watched" in data[data.keys()[0]]:
                    # exercises and videos would be initialized already
                    for user in data.keys():
                        avg_attempts = 0 if len(exercises) == 0 else sum(data[user]["ex:attempts"].values()) / float(len(exercises))
                        avg_video_points = 0 if len(videos) == 0 else sum(data[user]["vid:total_seconds_watched"].values()) / float(len(videos))
                        data[user][data_type] = 100. * (0.5 * avg_attempts / 10. + 0.5 * avg_video_points / 750.)
                else:
                    data_types += ["ex:attempts", "vid:total_seconds_watched", "effort"]

            #
            # These are detail stats: you get many per user
            #
            # Just querying out data directly: Video
            elif data_type.startswith("vid:") and data_type[4:] in [f.name for f in VideoLog._meta.fields]:

                for user in data.keys():
                    data[user][data_type] = OrderedDict([(v['video_id'], v[data_type[4:]]) for v in vid_logs[user]])

            # Just querying out data directly: Exercise
            elif data_type.startswith("ex:") and data_type[3:] in [f.name for f in ExerciseLog._meta.fields]:

                for user in data.keys():
                    data[user][data_type] = OrderedDict([(el['exercise_id'], el[data_type[3:]]) for el in ex_logs[user]])

            # User Log Queries
            elif data_type.startswith("user:"******"", "activity", activity_logs)

                for user in data.keys():
                    data[user][data_type] = [log[data_type[5:]] for log in activity_logs[user]]

            # User Summary Queries
            elif data_type.startswith("usersum:") and data_type[8:] in [f.name for f in UserLogSummary._meta.fields] and UserLog.is_enabled():

                activity_logs = query_logs(data.keys(), "", "summaryactivity", activity_logs)

                for user in data.keys():
                    data[user][data_type] = sum([log[data_type[8:]] for log in activity_logs[user]])
            # Unknown requested quantity
            else:
                raise Exception("Unknown type: '%s' not in %s" % (data_type, str([f.name for f in ExerciseLog._meta.fields])))

    # Returning empty list instead of None allows javascript on client
    # side to read 'length' property without error.
    exercises = exercises or []

    videos = videos or []

    return {
        "data": data,
        "topics": topics,
        "exercises": exercises,
        "videos": videos,
    }
Exemple #8
0
def _get_user_usage_data(users,
                         groups=None,
                         period_start=None,
                         period_end=None,
                         group_id=None):
    """
    Returns facility user data, within the given date range.
    """

    groups = groups or set([user.group for user in users])

    # compute period start and end
    # Now compute stats, based on queried data
    num_exercises = len(get_exercise_cache())
    user_data = OrderedDict()
    group_data = OrderedDict()

    # Make queries efficiently
    exercise_logs = ExerciseLog.objects.filter(user__in=users, complete=True)
    video_logs = VideoLog.objects.filter(user__in=users,
                                         total_seconds_watched__gt=0)
    login_logs = UserLogSummary.objects.filter(user__in=users)

    # filter results
    login_logs = login_logs.filter(total_seconds__gt=0)
    if period_start:
        exercise_logs = exercise_logs.filter(
            completion_timestamp__gte=period_start)
        video_logs = video_logs.filter(completion_timestamp__gte=period_start)
    if period_end:
        # MUST: Fix the midnight bug where period end covers up to the prior day only because
        # period end is datetime(year, month, day, hour=0, minute=0), meaning midnight of previous day.
        # Example:
        #   If period_end == '2014-12-01', we cannot include the records dated '2014-12-01 09:30'.
        #   So to fix this, we change it to '2014-12-01 23:59.999999'.
        period_end = dateutil.parser.parse(period_end)
        period_end = period_end + dateutil.relativedelta.relativedelta(
            days=+1, microseconds=-1)
        exercise_logs = exercise_logs.filter(
            completion_timestamp__lte=period_end)
        video_logs = video_logs.filter(completion_timestamp__lte=period_end)
    if period_start and period_end:
        exercise_logs = exercise_logs.filter(
            Q(completion_timestamp__gte=period_start)
            & Q(completion_timestamp__lte=period_end))

        q1 = Q(completion_timestamp__isnull=False) & \
            Q(completion_timestamp__gte=period_start) & \
            Q(completion_timestamp__lte=period_end)
        video_logs = video_logs.filter(q1)

        login_q1 = Q(start_datetime__gte=period_start) & Q(start_datetime__lte=period_end) & \
            Q(end_datetime__gte=period_start) & Q(end_datetime__lte=period_end)
        login_logs = login_logs.filter(login_q1)
    # Force results in a single query
    exercise_logs = list(exercise_logs.values("exercise_id", "user__pk"))
    video_logs = list(video_logs.values("video_id", "user__pk"))
    login_logs = list(
        login_logs.values("activity_type", "total_seconds", "user__pk"))

    for user in users:
        user_data[user.pk] = OrderedDict()
        user_data[user.pk]["id"] = user.pk
        user_data[user.pk]["first_name"] = user.first_name
        user_data[user.pk]["last_name"] = user.last_name
        user_data[user.pk]["username"] = user.username
        user_data[user.pk]["group"] = user.group

        user_data[user.pk][
            "total_report_views"] = 0  #report_stats["count__sum"] or 0
        user_data[
            user.pk]["total_logins"] = 0  # login_stats["count__sum"] or 0
        user_data[user.pk][
            "total_hours"] = 0  #login_stats["total_seconds__sum"] or 0)/3600.

        user_data[user.pk]["total_exercises"] = 0
        user_data[user.pk]["pct_mastery"] = 0.
        user_data[user.pk]["exercises_mastered"] = []

        user_data[user.pk]["total_videos"] = 0
        user_data[user.pk]["videos_watched"] = []

    for elog in exercise_logs:
        user_data[elog["user__pk"]]["total_exercises"] += 1
        user_data[elog["user__pk"]]["pct_mastery"] += 1. / num_exercises
        user_data[elog["user__pk"]]["exercises_mastered"].append(
            elog["exercise_id"])

    for vlog in video_logs:
        user_data[vlog["user__pk"]]["total_videos"] += 1
        user_data[vlog["user__pk"]]["videos_watched"].append(vlog["video_id"])

    for llog in login_logs:
        if llog["activity_type"] == UserLog.get_activity_int("coachreport"):
            user_data[llog["user__pk"]]["total_report_views"] += 1
        elif llog["activity_type"] == UserLog.get_activity_int("login"):
            user_data[llog["user__pk"]]["total_hours"] += (
                llog["total_seconds"]) / 3600.
            user_data[llog["user__pk"]]["total_logins"] += 1

    for group in list(groups) + [None] * (
            group_id == None or group_id
            == UNGROUPED):  # None for ungrouped, if no group_id passed.
        group_pk = getattr(group, "pk", None)
        group_name = getattr(group, "name", _(UNGROUPED))
        group_title = getattr(group, "title", _(UNGROUPED))
        group_data[group_pk] = {
            "id": group_pk,
            "name": group_name,
            "title": group_title,
            "total_logins": 0,
            "total_hours": 0,
            "total_users": 0,
            "total_videos": 0,
            "total_exercises": 0,
            "pct_mastery": 0,
        }

    # Add group data.  Allow a fake group UNGROUPED
    for user in users:
        group_pk = getattr(user.group, "pk", None)
        if group_pk not in group_data:
            logging.error("User %s still in nonexistent group %s!" %
                          (user.id, group_pk))
            continue
        group_data[group_pk]["total_users"] += 1
        group_data[group_pk]["total_logins"] += user_data[
            user.pk]["total_logins"]
        group_data[group_pk]["total_hours"] += user_data[
            user.pk]["total_hours"]
        group_data[group_pk]["total_videos"] += user_data[
            user.pk]["total_videos"]
        group_data[group_pk]["total_exercises"] += user_data[
            user.pk]["total_exercises"]

        total_mastery_so_far = (group_data[group_pk]["pct_mastery"] *
                                (group_data[group_pk]["total_users"] - 1) +
                                user_data[user.pk]["pct_mastery"])
        group_data[group_pk][
            "pct_mastery"] = total_mastery_so_far / group_data[group_pk][
                "total_users"]

    if len(group_data) == 1 and group_data.has_key(None):
        if not group_data[None]["total_users"]:
            del group_data[None]

    return (user_data, group_data)
Exemple #9
0
def retrieve_API_data(channel=None):

    # TODO(jamalex): See how much of what we do here can be replaced by KA's new projection-based API
    # http://www.khanacademy.org/api/v2/topics/topictree?projection={"topics":[{"slug":1,"childData":[{"id":1}]}]}

    khan = Khan()

    logging.info("Fetching Khan topic tree")

    topic_tree = khan.get_topic_tree()

    logging.info("Fetching Khan exercises")

    exercises = khan.get_exercises()

    exercises_dummy = khan.get_exercises()

    logging.info("Fetching Khan videos")

    content = khan.get_videos()

    # Hack to hardcode the mp4 format flag on Videos.
    for con in content:
        con["format"] = "mp4"

    # Compute and save file sizes
    logging.info("Checking remote content file sizes...")
    try:
        with open(REMOTE_VIDEO_SIZE_FILEPATH, "r") as fp:
            old_sizes = json.load(fp)
    except:
        old_sizes = {}
    blacklist = [key for key, val in old_sizes.items()
                 if val > 0]  # exclude any we already know about
    sizes_by_id, sizes = query_remote_content_file_sizes(content,
                                                         blacklist=blacklist)
    ensure_dir(os.path.dirname(REMOTE_VIDEO_SIZE_FILEPATH))
    old_sizes.update(sizes_by_id)
    sizes = OrderedDict(sorted(old_sizes.items()))
    with open(REMOTE_VIDEO_SIZE_FILEPATH, "w") as fp:
        json.dump(sizes, fp, indent=2)
    logging.info("Finished checking remote content file sizes...")

    assessment_items = []

    # Limit number of simultaneous requests
    semaphore = threading.BoundedSemaphore(100)

    def fetch_assessment_data(exercise):
        logging.info("Fetching Assessment Item Data for {exercise}".format(
            exercise=exercise.display_name))
        for assessment_item in exercise.all_assessment_items:
            counter = 0
            wait = 5
            while wait:
                try:
                    semaphore.acquire()
                    logging.info(
                        "Fetching assessment item {assessment}".format(
                            assessment=assessment_item["id"]))
                    assessment_data = khan.get_assessment_item(
                        assessment_item["id"])
                    semaphore.release()
                    if assessment_data.get("item_data"):
                        wait = 0
                        assessment_items.append(assessment_data)
                    else:
                        logging.info(
                            "Fetching assessment item {assessment} failed retrying in {wait}"
                            .format(assessment=assessment_item["id"],
                                    wait=wait))
                        time.sleep(wait)
                        wait = wait * 2
                        counter += 1
                except (requests.ConnectionError, requests.Timeout):
                    semaphore.release()
                    time.sleep(wait)
                    wait = wait * 2
                    counter += 1
                if counter > 5:
                    logging.info(
                        "Fetching assessment item {assessment} failed more than 5 times, aborting"
                        .format(assessment=assessment_item["id"]))
                    break

    threads = [
        threading.Thread(target=fetch_assessment_data, args=(exercise, ))
        for exercise in exercises_dummy
    ]

    for thread in threads:
        thread.start()
    for thread in threads:
        thread.join()

    return topic_tree, exercises, assessment_items, content
Exemple #10
0
def test_detail_view(request, test_id):
    """View details of student performance on specific exams"""

    facility, group_id, context = coach_nav_context(request, "test")
    # get users in this facility and group
    users = get_user_queryset(request, facility, group_id)

    # Get test object
    test_resource = TestResource()
    test_obj = test_resource._read_test(test_id=test_id)

    # get all of the test logs for this specific test object and generated by these specific users
    if group_id:
        test_logs = TestLog.objects.filter(user__group=group_id, test=test_id)

        # Narrow all by ungroup facility user
        if group_id == control_panel_api_resources.UNGROUPED_KEY:
            if facility:
                test_logs = TestLog.objects.filter(user__group__isnull=True)
            else:
                test_logs = TestLog.objects.filter(facility=facility,
                                                   user__group__isnull=True)
    else:
        # covers the all groups case
        test_logs = TestLog.objects.filter(user__facility=facility,
                                           test=test_id)

    results_table, scores_dict = OrderedDict(), OrderedDict()
    # build this up now to use in summary stats section
    ex_ids = set(literal_eval(test_obj.ids))
    for ex in ex_ids:
        scores_dict[ex] = []
    for s in users:
        s.name = s.get_name()
        user_attempts = AttemptLog.objects.filter(user=s,
                                                  context_type='test',
                                                  context_id=test_id)
        results_table[s] = []
        attempts_count_total, attempts_count_correct_total = 0, 0
        for ex in ex_ids:
            attempts = [
                attempt for attempt in user_attempts
                if attempt.exercise_id == ex
            ]

            attempts_count = len(attempts)
            attempts_count_correct = len(
                [attempt for attempt in attempts if attempt.correct])

            attempts_count_total += attempts_count
            attempts_count_correct_total += attempts_count_correct

            if attempts_count:
                score = round(
                    100 * float(attempts_count_correct) /
                    float(attempts_count), 1)
                scores_dict[ex].append(score)
                display_score = "%d%%" % score
            else:
                score = ''
                display_score = ''

            results_table[s].append({
                'display_score': display_score,
                'raw_score': score,
            })

        # Calc overall score
        if attempts_count_total:
            score = round(
                100 * float(attempts_count_correct_total) /
                float(attempts_count_total), 1)
            display_score = "%d%%" % score
            fraction_correct = "(%(correct)d/%(attempts)d)" % (
                {
                    'correct': attempts_count_correct_total,
                    'attempts': attempts_count_total
                })
        else:
            score = ''
            display_score = ''
            fraction_correct = ''

        results_table[s].append({
            'display_score': display_score,
            'raw_score': score,
            'title': fraction_correct,
        })

    # This retrieves stats for individual exercises
    stats_dict = OrderedDict()
    for stat in SUMMARY_STATS:
        stats_dict[stat] = []
        for ex in ex_ids:
            scores_list = scores_dict[ex]
            if scores_list:
                stats_dict[stat].append("%d%%" %
                                        return_list_stat(scores_list, stat))
            else:
                stats_dict[stat].append('')

    # replace the exercise ids with their full names
    exercises = get_exercise_cache()
    ex_titles = []
    for ex in ex_ids:
        ex_titles.append(exercises[ex]['title'])

    # provide a list of test options to view for this group/facility combo
    if group_id:
        test_logs = TestLog.objects.filter(user__group=group_id)
    else:
        # covers the all/no groups case
        test_logs = TestLog.objects.filter(user__facility=facility)
    test_objects = test_resource._read_tests()
    unique_test_ids = set([test_log.test for test_log in test_logs])
    test_options = [{
        'id':
        obj.test_id,
        'url':
        reverse('test_detail_view', kwargs={'test_id': obj.test_id}),
        'title':
        obj.title
    } for obj in test_objects if obj.test_id in unique_test_ids]
    context = plotting_metadata_context(request, facility=facility)
    context.update({
        "test_obj": test_obj,
        "ex_cols": ex_titles,
        "results_table": results_table,
        "stats_dict": stats_dict,
        "test_options": test_options,
    })
    return context
Exemple #11
0
def test_view(request):
    """Test view gets data server-side and displays exam results"""
    facility, group_id, context = coach_nav_context(request, "test")
    # Get students
    users = get_user_queryset(request, facility, group_id)

    # Get the TestLog objects generated by this group of students
    # TODO(cpauya): what about queryset for ungrouped students?
    test_logs = None
    if group_id:
        test_logs = TestLog.objects.filter(user__group=group_id)
        # Narrow all by ungroup facility user
        if group_id == control_panel_api_resources.UNGROUPED_KEY:
            test_logs = TestLog.objects.filter(user__group__isnull=True)
            if facility:
                TestLog.objects.filter(user__facility=facility,
                                       user__group__isnull=True)
            else:
                TestLog.objects.filter(user__group__isnull=True)

    elif facility:
        test_logs = TestLog.objects.filter(user__facility=facility)

    else:
        # filter by all facilities and groups for the user
        (groups, facilities,
         ungrouped_available) = get_accessible_objects_from_logged_in_user(
             request, facility=facility)
        if facilities:
            facility_ids = facilities.values_list("id", flat=True)
            test_logs = TestLog.objects.filter(
                user__facility__id__in=facility_ids)

    # Get list of all test objects
    test_resource = TestResource()
    tests_list = test_resource._read_tests()

    # Get completed test objects (used as columns)
    completed_test_ids = set([item.test for item in test_logs])
    test_objects = [
        test for test in tests_list if test.test_id in completed_test_ids
    ]

    # Create the table
    results_table = OrderedDict()
    for s in users:
        s.name = s.get_name()
        user_test_logs = [log for log in test_logs if log.user == s]
        results_table[s] = []
        for t in test_objects:
            log_object = next(
                (log for log in user_test_logs if log.test == t.test_id), '')
            # The template expects a status and a score to display
            if log_object:
                test_object = log_object.get_test_object()
                score = round(
                    100 * float(log_object.total_correct) /
                    float(test_object.total_questions), 1)
                display_score = "%(score)d%% (%(correct)d/%(total_questions)d)" % {
                    'score': score,
                    'correct': log_object.total_correct,
                    'total_questions': test_object.total_questions
                }
                if log_object.complete:
                    # Case: completed => we show % score
                    if score >= 80:
                        status = _("pass")
                    elif score >= 60:
                        status = _("borderline")
                    else:
                        status = _("fail")
                    results_table[s].append({
                        "status": status,
                        "cell_display": display_score,
                        "title": status.title(),
                    })
                else:
                    # Case: has started, but has not finished => we display % score & # remaining in title
                    n_remaining = test_object.total_questions - log_object.index
                    status = _("incomplete")
                    results_table[s].append({
                        "status": status,
                        "cell_display": display_score,
                        "title": status.title() + ": " +
                        ungettext("%(n_remaining)d problem remaining",
                                  n_remaining) % {
                                      'n_remaining': n_remaining
                                  },
                    })
            else:
                # Case: has not started
                status = _("not started")
                results_table[s].append({
                    "status": status,
                    "cell_display": "",
                    "title": status.title(),
                })

        # This retrieves stats for students
        score_list = [
            round(
                100 * float(result.total_correct) /
                float(result.get_test_object().total_questions), 1)
            for result in user_test_logs
        ]
        for stat in SUMMARY_STATS:
            if score_list:
                results_table[s].append({
                    "status":
                    "statistic",
                    "cell_display":
                    "%d%%" % return_list_stat(score_list, stat),
                })
            else:
                results_table[s].append({
                    "status": "statistic",
                    "cell_display": "",
                })

    # This retrieves stats for tests
    stats_dict = OrderedDict()
    for stat in SUMMARY_STATS:
        stats_dict[stat] = []
        for test_obj in test_objects:
            # get the logs for this test across all users and then add summary stats
            log_scores = [
                round(
                    100 * float(test_log.total_correct) /
                    float(test_log.get_test_object().total_questions), 1)
                for test_log in test_logs if test_log.test == test_obj.test_id
            ]
            stats_dict[stat].append("%d%%" %
                                    return_list_stat(log_scores, stat))

    context.update(plotting_metadata_context(request, facility=facility))
    context.update({
        "results_table": results_table,
        "test_columns": test_objects,
        "summary_stats": SUMMARY_STATS,
        "stats_dict": stats_dict,
    })

    return context
Exemple #12
0
def _get_user_usage_data(users, groups=None, period_start=None, period_end=None, group_id=None):
    """
    Returns facility user data, within the given date range.
    """

    groups = groups or set([user.group for user in users])

    # compute period start and end
    # Now compute stats, based on queried data
    num_exercises = len(get_node_cache('Exercise'))
    user_data = OrderedDict()
    group_data = OrderedDict()


    # Make queries efficiently
    exercise_logs = ExerciseLog.objects.filter(user__in=users, complete=True)
    video_logs = VideoLog.objects.filter(user__in=users)
    login_logs = UserLogSummary.objects.filter(user__in=users)

    # filter results
    if period_start:
        exercise_logs = exercise_logs.filter(completion_timestamp__gte=period_start)
        video_logs = video_logs.filter(completion_timestamp__gte=period_start)
        login_logs = login_logs.filter(start_datetime__gte=period_start)
    if period_end:
        exercise_logs = exercise_logs.filter(completion_timestamp__lte=period_end)
        video_logs = video_logs.filter(completion_timestamp__lte=period_end)
        login_logs = login_logs.filter(end_datetime__lte=period_end)


    # Force results in a single query
    exercise_logs = list(exercise_logs.values("exercise_id", "user__pk"))
    video_logs = list(video_logs.values("video_id", "user__pk"))
    login_logs = list(login_logs.values("activity_type", "total_seconds", "user__pk"))

    for user in users:
        user_data[user.pk] = OrderedDict()
        user_data[user.pk]["id"] = user.pk
        user_data[user.pk]["first_name"] = user.first_name
        user_data[user.pk]["last_name"] = user.last_name
        user_data[user.pk]["username"] = user.username
        user_data[user.pk]["group"] = user.group


        user_data[user.pk]["total_report_views"] = 0#report_stats["count__sum"] or 0
        user_data[user.pk]["total_logins"] =0# login_stats["count__sum"] or 0
        user_data[user.pk]["total_hours"] = 0#login_stats["total_seconds__sum"] or 0)/3600.

        user_data[user.pk]["total_exercises"] = 0
        user_data[user.pk]["pct_mastery"] = 0.
        user_data[user.pk]["exercises_mastered"] = []

        user_data[user.pk]["total_videos"] = 0
        user_data[user.pk]["videos_watched"] = []


    for elog in exercise_logs:
        user_data[elog["user__pk"]]["total_exercises"] += 1
        user_data[elog["user__pk"]]["pct_mastery"] += 1. / num_exercises
        user_data[elog["user__pk"]]["exercises_mastered"].append(elog["exercise_id"])

    for vlog in video_logs:
        user_data[vlog["user__pk"]]["total_videos"] += 1
        user_data[vlog["user__pk"]]["videos_watched"].append(vlog["video_id"])

    for llog in login_logs:
        if llog["activity_type"] == UserLog.get_activity_int("coachreport"):
            user_data[llog["user__pk"]]["total_report_views"] += 1
        elif llog["activity_type"] == UserLog.get_activity_int("login"):
            user_data[llog["user__pk"]]["total_hours"] += (llog["total_seconds"]) / 3600.
            user_data[llog["user__pk"]]["total_logins"] += 1

    for group in list(groups) + [None]*(group_id==None or group_id=="Ungrouped"):  # None for ungrouped, if no group_id passed.
        group_pk = getattr(group, "pk", None)
        group_name = getattr(group, "name", _("Ungrouped"))
        group_data[group_pk] = {
            "id": group_pk,
            "name": group_name,
            "total_logins": 0,
            "total_hours": 0,
            "total_users": 0,
            "total_videos": 0,
            "total_exercises": 0,
            "pct_mastery": 0,
        }

    # Add group data.  Allow a fake group "Ungrouped"
    for user in users:
        group_pk = getattr(user.group, "pk", None)
        if group_pk not in group_data:
            logging.error("User %s still in nonexistent group %s!" % (user.id, group_pk))
            continue
        group_data[group_pk]["total_users"] += 1
        group_data[group_pk]["total_logins"] += user_data[user.pk]["total_logins"]
        group_data[group_pk]["total_hours"] += user_data[user.pk]["total_hours"]
        group_data[group_pk]["total_videos"] += user_data[user.pk]["total_videos"]
        group_data[group_pk]["total_exercises"] += user_data[user.pk]["total_exercises"]

        total_mastery_so_far = (group_data[group_pk]["pct_mastery"] * (group_data[group_pk]["total_users"] - 1) + user_data[user.pk]["pct_mastery"])
        group_data[group_pk]["pct_mastery"] =  total_mastery_so_far / group_data[group_pk]["total_users"]

    if len(group_data) == 1 and group_data.has_key(None):
        if not group_data[None]["total_users"]:
            del group_data[None]

    return (user_data, group_data)
def compute_data(data_types, who, where):
    """
    Compute the data in "data_types" for each user in "who", for the topics selected by "where"

    who: list of users
    where: topic_path
    data_types can include:
        pct_mastery
        effort
        attempts
    """

    # None indicates that the data hasn't been queried yet.
    #   We'll query it on demand, for efficiency
    topics = None
    exercises = None
    videos = None

    # Initialize an empty dictionary of data, video logs, exercise logs, for each user
    data = OrderedDict(zip([w.id for w in who], [dict() for i in range(len(who))]))  # maintain the order of the users
    vid_logs = dict(zip([w.id for w in who], [[] for i in range(len(who))]))
    ex_logs = dict(zip([w.id for w in who], [[] for i in range(len(who))]))
    if UserLog.is_enabled():
        activity_logs = dict(zip([w.id for w in who], [[] for i in range(len(who))]))

    # Set up queries (but don't run them), so we have really easy aliases.
    #   Only do them if they haven't been done yet (tell this by passing in a value to the lambda function)
    # Topics: topics.
    # Exercises: names (ids for ExerciseLog objects)
    # Videos: video_id (ids for VideoLog objects)

    # This lambda partial creates a function to return all items with a particular path from the NODE_CACHE.
    search_fun_single_path = partial(lambda t, p: t["path"].startswith(p), p=tuple(where))
    # This lambda partial creates a function to return all items with paths matching a list of paths from NODE_CACHE.
    search_fun_multi_path = partial(lambda ts, p: any([t["path"].startswith(p) for t in ts]),  p=tuple(where))
    # Functions that use the functions defined above to return topics, exercises, and videos based on paths.
    query_topics = partial(lambda t, sf: t if t is not None else [t[0]["id"] for t in filter(sf, get_node_cache('Topic').values())], sf=search_fun_single_path)
    query_exercises = partial(lambda e, sf: e if e is not None else [ex[0]["id"] for ex in filter(sf, get_node_cache('Exercise').values())], sf=search_fun_multi_path)
    query_videos = partial(lambda v, sf: v if v is not None else [vid[0]["id"] for vid in filter(sf, get_node_cache('Video').values())], sf=search_fun_multi_path)

    # No users, don't bother.
    if len(who) > 0:

        # Query out all exercises, videos, exercise logs, and video logs before looping to limit requests.
        # This means we could pull data for n-dimensional coach report displays with the same number of requests!
        # Note: User activity is polled inside the loop, to prevent possible slowdown for exercise and video reports.
        exercises = query_exercises(exercises)

        videos = query_videos(videos)

        if exercises:
            ex_logs = query_logs(data.keys(), exercises, "exercise", ex_logs)

        if videos:
            vid_logs = query_logs(data.keys(), videos, "video", vid_logs)

        for data_type in (data_types if not hasattr(data_types, "lower") else [data_types]):  # convert list from string, if necessary
            if data_type in data[data.keys()[0]]:  # if the first user has it, then all do; no need to calc again.
                continue

            #
            # These are summary stats: you only get one per user
            #
            if data_type == "pct_mastery":

                # Efficient query out, spread out to dict
                for user in data.keys():
                    data[user][data_type] = 0 if not ex_logs[user] else 100. * sum([el['complete'] for el in ex_logs[user]]) / float(len(exercises))

            elif data_type == "effort":
                if "ex:attempts" in data[data.keys()[0]] and "vid:total_seconds_watched" in data[data.keys()[0]]:
                    # exercises and videos would be initialized already
                    for user in data.keys():
                        avg_attempts = 0 if len(exercises) == 0 else sum(data[user]["ex:attempts"].values()) / float(len(exercises))
                        avg_video_points = 0 if len(videos) == 0 else sum(data[user]["vid:total_seconds_watched"].values()) / float(len(videos))
                        data[user][data_type] = 100. * (0.5 * avg_attempts / 10. + 0.5 * avg_video_points / 750.)
                else:
                    data_types += ["ex:attempts", "vid:total_seconds_watched", "effort"]

            #
            # These are detail stats: you get many per user
            #
            # Just querying out data directly: Video
            elif data_type.startswith("vid:") and data_type[4:] in [f.name for f in VideoLog._meta.fields]:

                for user in data.keys():
                    data[user][data_type] = OrderedDict([(v['video_id'], v[data_type[4:]]) for v in vid_logs[user]])

            # Just querying out data directly: Exercise
            elif data_type.startswith("ex:") and data_type[3:] in [f.name for f in ExerciseLog._meta.fields]:

                for user in data.keys():
                    data[user][data_type] = OrderedDict([(el['exercise_id'], el[data_type[3:]]) for el in ex_logs[user]])

            # User Log Queries
            elif data_type.startswith("user:"******"", "activity", activity_logs)

                for user in data.keys():
                    data[user][data_type] = [log[data_type[5:]] for log in activity_logs[user]]

            # User Summary Queries
            elif data_type.startswith("usersum:") and data_type[8:] in [f.name for f in UserLogSummary._meta.fields] and UserLog.is_enabled():

                activity_logs = query_logs(data.keys(), "", "summaryactivity", activity_logs)

                for user in data.keys():
                    data[user][data_type] = sum([log[data_type[8:]] for log in activity_logs[user]])
            # Unknown requested quantity
            else:
                raise Exception("Unknown type: '%s' not in %s" % (data_type, str([f.name for f in ExerciseLog._meta.fields])))

    # Returning empty list instead of None allows javascript on client
    # side to read 'length' property without error.
    exercises = exercises or []

    videos = videos or []

    return {
        "data": data,
        "topics": topics,
        "exercises": exercises,
        "videos": videos,
    }
Exemple #14
0
def recent_syncing(request,
                   org_id=None,
                   max_zones=20,
                   chunk_size=100,
                   ndays=None):
    ndays = ndays or int(request.GET.get("days", 7))

    ss = SyncSession.objects \
        .annotate( \
            ndevices=Count("client_device__devicezone__zone__id", distinct=True), \
        ) \
        .filter(models_uploaded__gt=0, timestamp__gt=F("timestamp") - timedelta(days=ndays)) \
        .order_by("-timestamp") \
        .values(
            "client_device__devicezone__zone__name", "client_device__devicezone__zone__id", "client_device__devicezone__zone__organization__id", \
            "ndevices", "timestamp", "models_uploaded", "client_device__name", "client_device__id", "client_version", "client_os", "client_device__devicemetadata__is_demo_device", \
        )

    # Apparently I can't group by zone.  So, will have to do manually
    zones = OrderedDict()
    cur_chunk = 0
    while len(zones) < max_zones and cur_chunk < ss.count():
        for session in ss[cur_chunk:cur_chunk + chunk_size]:
            if len(zones) >= max_zones:
                break
            zone_id = session["client_device__devicezone__zone__id"]
            if zone_id in zones:
                zones[zone_id]["nsessions"] += 1
                zones[zone_id]["nuploaded"] += session["models_uploaded"]
                zones[zone_id]["device"]["is_demo_device"] = zones[zone_id][
                    "device"]["is_demo_device"] or session[
                        "client_device__devicemetadata__is_demo_device"]

            else:
                zones[zone_id] = {
                    "nsessions": 1,
                    "last_synced": session["timestamp"],
                    "nuploaded": session["models_uploaded"],
                    "name": session["client_device__devicezone__zone__name"],
                    "id": session["client_device__devicezone__zone__id"],
                    "organization": {
                        "id":
                        session[
                            "client_device__devicezone__zone__organization__id"]
                    },
                    "device": {
                        "id":
                        session["client_device__id"] or "ben",
                        "name":
                        session["client_device__name"],
                        "os":
                        session["client_os"],
                        "version":
                        session["client_version"],
                        "is_demo_device":
                        session[
                            "client_device__devicemetadata__is_demo_device"],
                    },
                }
        cur_chunk += chunk_size

    return {
        "days": ndays,
        "zones": zones,
    }
Exemple #15
0
def sorted_dict(d, key=lambda t: t[1], reverse=True, **kwargs):
    return OrderedDict(sorted(d.items(), key=key, reverse=reverse, **kwargs))
Exemple #16
0
def zone_management(request, zone_id="None"):
    context = control_panel_context(request, zone_id=zone_id)
    own_device = Device.get_own_device()

    if not context["zone"] and (zone_id != "None" or own_device.get_zone()
                                or settings.CENTRAL_SERVER):
        raise Http404(
        )  # on distributed server, we can make due if they're not registered.

    # Denote the zone as headless or not
    if context["zone"]:
        is_headless_zone = re.search(r'Zone for public key ',
                                     context["zone"].name)
    else:
        is_headless_zone = False

    # Accumulate device data
    device_data = OrderedDict()
    if context["zone"]:
        devices = Device.objects.filter(devicezone__zone=context["zone"])
    else:
        devices = Device.objects.filter(devicemetadata__is_own_device=True)

    for device in list(
            devices.order_by("devicemetadata__is_demo_device", "name")):

        user_activity = UserLogSummary.objects.filter(device=device)
        sync_sessions = SyncSession.objects.filter(client_device=device)
        if not settings.CENTRAL_SERVER and device.id != own_device.id:  # Non-local sync sessions unavailable on distributed server
            sync_sessions = None

        exercise_activity = ExerciseLog.objects.filter(signed_by=device)

        device_data[device.id] = {
            "name":
            device.name or device.id,
            "num_times_synced":
            sync_sessions.count() if sync_sessions is not None else None,
            "last_time_synced":
            sync_sessions.aggregate(Max("timestamp"))["timestamp__max"]
            if sync_sessions is not None else None,
            "is_demo_device":
            device.get_metadata().is_demo_device,
            "is_own_device":
            device.get_metadata().is_own_device
            and not settings.CENTRAL_SERVER,
            "last_time_used":
            exercise_activity.order_by("-completion_timestamp")[0:1]
            if user_activity.count() == 0 else user_activity.order_by(
                "-last_activity_datetime", "-end_datetime")[0],
            "counter":
            device.get_counter_position(),
            "is_registered":
            device.is_registered(),
        }

    # Accumulate facility data
    facility_data = OrderedDict()
    if context["zone"]:
        facilities = Facility.objects.by_zone(context["zone"])
    else:
        facilities = Facility.objects.all()
    for facility in list(facilities.order_by("name")):

        user_activity = UserLogSummary.objects.filter(user__facility=facility)
        exercise_activity = ExerciseLog.objects.filter(user__facility=facility)

        facility_data[facility.id] = {
            "name":
            facility.name,
            "num_users":
            FacilityUser.objects.filter(facility=facility).count(),
            "num_groups":
            FacilityGroup.objects.filter(facility=facility).count(),
            "id":
            facility.id,
            "last_time_used":
            exercise_activity.order_by("-completion_timestamp")[0:1]
            if user_activity.count() == 0 else user_activity.order_by(
                "-last_activity_datetime", "-end_datetime")[0],
            "is_deletable":
            facility.is_deletable(),
        }

    context.update({
        "is_headless_zone":
        is_headless_zone,
        "facilities":
        facility_data,
        "devices":
        device_data,
        "upload_form":
        UploadFileForm(),
        "own_device_is_trusted":
        Device.get_own_device().get_metadata().is_trusted,
    })
    context.update(set_clock_context(request))
    return context
Exemple #17
0
def show_deployment_cms(request):
    """
    This does 3 queries:
    * Facilities, organized by organization.
    * Devices, organized by organization.
    * Organizations, organized by organization.

    It then combines results from these 3 queries to create a list of:
    * All Users that have facilities, have devices but no facilities, and have no devices.
    """

    # Query 1: Organizations
    deployment_data = OrderedDict([(org["id"], {
        "org_name": org["name"],
        "owner": org["owner__username"],
        "total_users": 0,
        "sync_sessions": 0,
        "models_synced": 0,
    }) for org in list(Organization.objects.values("id", "name", "owner__username"))])

    # Query 2: Organizations with users
    for org in list(Organization.objects.values("id", "users__username", "users__first_name", "users__last_name")):
        org_id = org["id"]
        deployment_data[org_id]["users"] = deployment_data[org_id].get("users", {})
        deployment_data[org_id]["users"][org["users__username"]] = {
            "first_name": org["users__first_name"],
            "last_name": org["users__last_name"],
            "email": org["users__username"],
        }

    # Query 3: Organizations with devices
    device_data = DeviceZone.objects \
        .annotate( \
            n_sessions=Count("device__client_sessions"), \
            n_models=Sum("device__client_sessions__models_uploaded")) \
        .values("n_sessions", "n_models", "device__id", "device__name", "zone__id", "zone__name", "zone__organization__id") \
        .order_by("zone__name", "-n_models", "-n_sessions")

    for devzone in list(device_data):
        org_id = devzone["zone__organization__id"]
        if not org_id:
            continue
        deployment_data[org_id]["devices"] = deployment_data[org_id].get("devices", {})
        deployment_data[org_id]["devices"][devzone["device__id"]] = {
            "id": devzone["device__id"],
            "name": devzone["device__name"],
            "zone_name": devzone["zone__name"],
            "zone_id": devzone["zone__id"],
            "models_synced": devzone["n_models"],
            "sync_sessions": devzone["n_sessions"],
        }
        deployment_data[org_id]["models_synced"] += devzone["n_models"] or 0
        deployment_data[org_id]["sync_sessions"] += devzone["n_sessions"] or 0

    # Query 4: Organizations with facilities
    facilities_by_org = list(Facility.objects \
        .filter(signed_by__devicemetadata__is_demo_device=False) \
        .annotate( \
            n_actual_users=Count("facilityuser")) \
        .values( \
            "n_actual_users", \
            "name", "address", \
            "latitude", "longitude", \
            "contact_email", "contact_name", \
            "user_count", \
            "zone_fallback__organization__id", \
            "signed_by__devicezone__zone__organization__id",) \
        .order_by("-n_actual_users"))

    for fac in list(facilities_by_org):
        org_id = fac["signed_by__devicezone__zone__organization__id"] or fac["zone_fallback__organization__id"]
        deployment_data[org_id]["facilities"] = deployment_data[org_id].get("facilities", {})
        deployment_data[org_id]["facilities"][fac["name"]] = fac
        deployment_data[org_id]["total_users"] += fac["n_actual_users"] or 0

    # Combine all data into a single data store.
    sort_fn = lambda dep: (dep["total_users"], dep["models_synced"], dep["sync_sessions"])
    paged_data, page_urls = paginate_data(request, sorted(deployment_data.values(), key=sort_fn, reverse=True), page=int(request.GET.get("cur_page", 1)), per_page=int(request.GET.get("per_page", 25)))

    return {
        "pages": paged_data,
        "page_urls": page_urls,
        "title": _("Deployments CMS"),
    }
Exemple #18
0
def _get_user_usage_data(users, groups=None, period_start=None, period_end=None, group_id=None):
    """
    Returns facility user data, within the given date range.
    """

    groups = groups or set([user.group for user in users])

    # compute period start and end
    # Now compute stats, based on queried data
    num_exercises = len(get_node_cache('Exercise'))
    user_data = OrderedDict()
    group_data = OrderedDict()

    # Make queries efficiently
    exercise_logs = ExerciseLog.objects.filter(user__in=users, complete=True)
    video_logs = VideoLog.objects.filter(user__in=users, total_seconds_watched__gt=0)
    login_logs = UserLogSummary.objects.filter(user__in=users)

    # filter results
    login_logs = login_logs.filter(total_seconds__gt=0)
    if period_start:
        exercise_logs = exercise_logs.filter(completion_timestamp__gte=period_start)
    if period_end:
        # MUST: Fix the midnight bug where period end covers up to the prior day only because
        # period end is datetime(year, month, day, hour=0, minute=0), meaning midnight of previous day.
        # Example:
        #   If period_end == '2014-12-01', we cannot include the records dated '2014-12-01 09:30'.
        #   So to fix this, we change it to '2014-12-01 23:59.999999'.
        period_end = dateutil.parser.parse(period_end)
        period_end = period_end + dateutil.relativedelta.relativedelta(days=+1, microseconds=-1)
        exercise_logs = exercise_logs.filter(completion_timestamp__lte=period_end)
    if period_start and period_end:
        exercise_logs = exercise_logs.filter(Q(completion_timestamp__gte=period_start) &
                                             Q(completion_timestamp__lte=period_end))

        q1 = Q(completion_timestamp__isnull=False) & \
             Q(completion_timestamp__gte=period_start) & \
             Q(completion_timestamp__lte=period_end)
        q2 = Q(completion_timestamp__isnull=True)
        video_logs = video_logs.filter(q1 | q2)

        login_q1 = Q(start_datetime__gte=period_start) & Q(start_datetime__lte=period_end) & \
                   Q(end_datetime__gte=period_start) & Q(end_datetime__lte=period_end)
        login_logs = login_logs.filter(login_q1)
    # Force results in a single query
    exercise_logs = list(exercise_logs.values("exercise_id", "user__pk"))
    video_logs = list(video_logs.values("video_id", "user__pk"))
    login_logs = list(login_logs.values("activity_type", "total_seconds", "user__pk"))

    for user in users:
        user_data[user.pk] = OrderedDict()
        user_data[user.pk]["id"] = user.pk
        user_data[user.pk]["first_name"] = user.first_name
        user_data[user.pk]["last_name"] = user.last_name
        user_data[user.pk]["username"] = user.username
        user_data[user.pk]["group"] = user.group

        user_data[user.pk]["total_report_views"] = 0#report_stats["count__sum"] or 0
        user_data[user.pk]["total_logins"] =0# login_stats["count__sum"] or 0
        user_data[user.pk]["total_hours"] = 0#login_stats["total_seconds__sum"] or 0)/3600.

        user_data[user.pk]["total_exercises"] = 0
        user_data[user.pk]["pct_mastery"] = 0.
        user_data[user.pk]["exercises_mastered"] = []

        user_data[user.pk]["total_videos"] = 0
        user_data[user.pk]["videos_watched"] = []


    for elog in exercise_logs:
        user_data[elog["user__pk"]]["total_exercises"] += 1
        user_data[elog["user__pk"]]["pct_mastery"] += 1. / num_exercises
        user_data[elog["user__pk"]]["exercises_mastered"].append(elog["exercise_id"])

    for vlog in video_logs:
        user_data[vlog["user__pk"]]["total_videos"] += 1
        user_data[vlog["user__pk"]]["videos_watched"].append(vlog["video_id"])

    for llog in login_logs:
        if llog["activity_type"] == UserLog.get_activity_int("coachreport"):
            user_data[llog["user__pk"]]["total_report_views"] += 1
        elif llog["activity_type"] == UserLog.get_activity_int("login"):
            user_data[llog["user__pk"]]["total_hours"] += (llog["total_seconds"]) / 3600.
            user_data[llog["user__pk"]]["total_logins"] += 1

    for group in list(groups) + [None]*(group_id==None or group_id=="Ungrouped"):  # None for ungrouped, if no group_id passed.
        group_pk = getattr(group, "pk", None)
        group_name = getattr(group, "name", _("Ungrouped"))
        group_data[group_pk] = {
            "id": group_pk,
            "name": group_name,
            "total_logins": 0,
            "total_hours": 0,
            "total_users": 0,
            "total_videos": 0,
            "total_exercises": 0,
            "pct_mastery": 0,
        }

    # Add group data.  Allow a fake group "Ungrouped"
    for user in users:
        group_pk = getattr(user.group, "pk", None)
        if group_pk not in group_data:
            logging.error("User %s still in nonexistent group %s!" % (user.id, group_pk))
            continue
        group_data[group_pk]["total_users"] += 1
        group_data[group_pk]["total_logins"] += user_data[user.pk]["total_logins"]
        group_data[group_pk]["total_hours"] += user_data[user.pk]["total_hours"]
        group_data[group_pk]["total_videos"] += user_data[user.pk]["total_videos"]
        group_data[group_pk]["total_exercises"] += user_data[user.pk]["total_exercises"]

        total_mastery_so_far = (group_data[group_pk]["pct_mastery"] * (group_data[group_pk]["total_users"] - 1) + user_data[user.pk]["pct_mastery"])
        group_data[group_pk]["pct_mastery"] =  total_mastery_so_far / group_data[group_pk]["total_users"]

    if len(group_data) == 1 and group_data.has_key(None):
        if not group_data[None]["total_users"]:
            del group_data[None]

    return (user_data, group_data)