# Add nodes
net.add_node(name='a')
net.add_node(name='b')
net.add_node(name='c')
net.add_node(name='d')

# Add edges
net.add_edge(Edge(start='a', end='b', phase=1, attenuation=0.8, delay=1))
net.add_edge(Edge(start='b', end='c', phase=2, attenuation=0.6, delay=2))
net.add_edge(Edge(start='b', end='d', phase=3, attenuation=0.4, delay=3))

# Add input
net.add_input(name='a', amplitude=1.0, phase=0)

# Visualize the network
net.visualize(path='./visualizations/feedforward', format='svg')

# Evaluate the network
net.evaluate(amplitude_cutoff=1e-3)

# Compute output and show results
print('paths leading to c:', net.get_paths('c'))
print('paths leading to d:', net.get_paths('d'))
print('waves arriving at c:', net.get_result('c'))
print('waves arriving at d:', net.get_result('d'))
print('latex string for waves arriving at c:', net.get_latex_result('c'))

# render output in a html file
net.get_html_result(['c', 'd'],
                    precision=2,
                    path='./visualizations/feedforward.html')
    net.add_node(node)
for edge in edges:
    net.add_edge(edge)
net.add_input('a', amplitude=1.0)
for edge in net.edges:
    edge.attenuation = 0.75
    edge.phase = np.random.uniform(0, 2 * np.pi)

net.visualize(path='./visualizations/mediumexample')
####
# Evaluate Network
####
net.evaluate(amplitude_cutoff=1e-3, max_endpoints=1e6)

####
# Print and plot
####
for node in net.nodes:
    print('number of paths to ' + node + ':', len(net.get_paths(node)))
print('final path to a added:', net.get_paths('a')[-1])
net.print_stats()

phases = np.asarray([val[1] for val in net.get_result('a')])
phases = phases % 2 * np.pi
amplitudes = np.asarray([val[0] for val in net.get_result('a')])
plt.hist(phases, weights=amplitudes, bins=30)
plt.title("amplitude weighted, binned phase contributions to a")
plt.ylabel('amplitude')
plt.xlabel('phase')
plt.show()
net.add_node(name='d')

net.add_edge(Edge(start='a', end='b', phase=phi1, attenuation=amp1, delay=1))
net.add_edge(Edge(start='b', end='c', phase=phi2, attenuation=amp2, delay=2))
net.add_edge(Edge(start='b', end='d', phase=3, attenuation=0.4, delay=3))

net.add_input(name='a', amplitude=1.0, phase=0)

net.visualize(path='./visualizations/symbolicfeedforward', format='svg')

net.evaluate(use_shared_default=False, feed_dict=None)

# print('paths leading to c:', net.get_paths('c'))
# print('paths leading to d:', net.get_paths('d'))

print('waves arriving at c:', net.get_result('c'))
print('waves arriving at d:', net.get_result('d'))
net.get_html_result(['c', 'd'],
                    path='./visualizations/symbolicfeedforward.html')
# Evaluation without feed dictionary, using the default value of each SymNum
waves = [
    tuple([
        w.eval(feed_dict=None, use_shared_default=False)
        if hasattr(w, 'eval') else w for w in inner
    ]) for inner in net.get_result('c')
]
print('Waves arriving at c:', waves, '\n')
print(net.get_eval_result(name='c', feed_dict=None, use_shared_default=False))

# Evaluation without feed dictionary, with global defaults
waves = [
net.add_node(name='a')
net.add_node(name='b')
net.add_node(name='c')

net.add_edge(Edge(start='a', end='b', phase=2, attenuation=amp1, delay=1))
net.add_edge(Edge(start='b', end='c', phase=1, attenuation=amp2, delay=2))
net.add_edge(
    Edge(start='c', end='a', phase=phi3, attenuation=0.5 * amp3, delay=3))
net.add_input('a')
net.add_input('b')

net.evaluate(amplitude_cutoff=0.001)
net.visualize(path='./visualizations/docdemo', format='png')
net.visualize(path='./visualizations/docdemo', format='svg')

print(net.get_result('b'))
print(net.get_latex_result('b', linebreak_limit=1))
net.get_html_result(['c', 'b'], path='./visualizations/docdemo_latex.html')
### Create a testbench with a feed dictionary
tb = Testbench(network=net,
               timestep=0.05,
               feed_dict={
                   'v1': 0.8,
                   'v2': 0.8,
                   'v3': 0.9,
                   'v4': 3
               })

x_in_a = np.sin(np.linspace(0, 2 * np.pi,
                            400))  # create the input signal (Dimensino N)
t_in = np.linspace(0, 20,
Exemple #5
0
net = Network()
for node in nodes:
    net.add_node(node)
for edge in edges:
    net.add_edge(edge)
net.add_input('a', amplitude=1.0)
for i, edge in enumerate(net.edges):
    edge.phase = np.random.uniform(0, 2 * np.pi)

####
# Evaluate Network
####
net.evaluate(amplitude_cutoff=5e-3, max_endpoints=1e6, use_shared_default=True)
waves = [
    tuple([w.eval() if hasattr(w, 'eval') else w for w in inner])
    for inner in net.get_result('a')
]

####
# Print and plot
####
for node in net.nodes:
    print('number of paths to ' + node + ':', len(net.get_paths(node)))
print('final path to a added:', net.get_paths('a')[-1])
print('10 first waves arriving at a:', waves[:10])
net.print_stats()

#####
# Reset variable
#####
feed = {"Edge_ab": 0.8}
    net.add_edge(edge)
net.add_input('a', amplitude=1.0)

net.visualize(path='./visualizations/symbolicrecurrent')

####
# Evaluate Network
####
net.evaluate(amplitude_cutoff=1e-2,
             max_endpoints=1e6,
             use_shared_default=False)

print('paths leading to a:', net.get_paths('a'))
waves = [
    tuple([w.eval() if hasattr(w, 'eval') else w for w in inner])
    for inner in net.get_result('a')
]
print('waves arriving at a:', waves, '\n')
net.print_stats()

####
# Inserting variable values
###
waves = [
    tuple([
        w.eval(feed_dict={
            'amp1': .5,
            'ph1': .2
        }) if hasattr(w, 'eval') else w for w in inner
    ]) for inner in net.get_result('a')
]
Exemple #7
0
###Define Network

nodes = ['a', 'b', 'c', 'd']
edges = [
    Edge(
        'a', 'b', phase=0.5, attenuation=1.1, delay=1.0
    ),  # some edges can have gain, but the overall gain of loops must be <1
    Edge('b', 'c', phase=1, attenuation=0.9, delay=2.0),
    Edge('c', 'd', phase=0.2, attenuation=0.98, delay=0.5),
    Edge('d', 'a', phase=-0.5, attenuation=0.8, delay=1.5)
]

net = Network()
for node in nodes:
    net.add_node(node)
for edge in edges:
    net.add_edge(edge)
net.add_input('a', amplitude=1.0)
net.visualize(path='./visualizations/recurrent', format='svg')

####
#Evaluate Network
####
net.evaluate(amplitude_cutoff=1e-1, max_endpoints=1e6)

####
#Print data
####
print('paths leading to a:', net.get_paths('a'))
print('waves arriving at a:', net.get_result('a'))
net.print_stats()