Exemple #1
0
def CAM16_to_XYZ(CAM16_specification,
                 XYZ_w,
                 L_A,
                 Y_b,
                 surround=CAM16_VIEWING_CONDITIONS['Average'],
                 discount_illuminant=False):
    """
    Converts from *CAM16* specification to *CIE XYZ* tristimulus values.

    This is the *inverse* implementation.

    Parameters
    ----------
    CAM16_specification : CAM16_Specification
        *CAM16* colour appearance model specification. Correlate of
        *Lightness* :math:`J`, correlate of *chroma* :math:`C` or correlate of
        *colourfulness* :math:`M` and *hue* angle :math:`h` in degrees must be
        specified, e.g. :math:`JCh` or :math:`JMh`.
    XYZ_w : array_like
        *CIE XYZ* tristimulus values of reference white.
    L_A : numeric or array_like
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b : numeric or array_like
        Relative luminance of background :math:`Y_b` in :math:`cd/m^2`.
    surround : CAM16_InductionFactors, optional
        Surround viewing conditions.
    discount_illuminant : bool, optional
        Discount the illuminant.

    Returns
    -------
    XYZ : ndarray
        *CIE XYZ* tristimulus values.

    Raises
    ------
    ValueError
        If neither *C* or *M* correlates have been defined in the
        ``CAM16_specification`` argument.

    Notes
    -----

    +---------------------------+-----------------------+---------------+
    | **Domain**                | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``CAM16_specification.J`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.C`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.h`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.s`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.Q`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.M`` | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``CAM16_specification.H`` | [0, 360]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+
    | ``XYZ_w``                 | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    +---------------------------+-----------------------+---------------+
    | **Range**                 | **Scale - Reference** | **Scale - 1** |
    +===========================+=======================+===============+
    | ``XYZ``                   | [0, 100]              | [0, 1]        |
    +---------------------------+-----------------------+---------------+

    -   ``CAM16_specification`` can also be passed as a compatible argument
        to :func:`colour.utilities.as_namedtuple` definition.

    References
    ----------
    :cite:`Li2017`

    Examples
    --------
    >>> specification = CAM16_Specification(J=41.731207905126638,
    ...                                     C=0.103355738709070,
    ...                                     h=217.067959767393010)
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> CAM16_to_XYZ(specification, XYZ_w, L_A, Y_b)  # doctest: +ELLIPSIS
    array([ 19.01...,  20...  ,  21.78...])
    """

    J, C, h, _s, _Q, M, _H, _HC = as_namedtuple(CAM16_specification,
                                                CAM16_Specification)
    J = to_domain_100(J)
    C = to_domain_100(C) if C is not None else C
    h = to_domain_degrees(h)
    M = to_domain_100(M) if M is not None else M
    L_A = as_float_array(L_A)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = dot_vector(M_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else np.ones(L_A.shape))

    n, F_L, N_bb, N_cb, z = tsplit(
        viewing_condition_dependent_parameters(Y_b, Y_w, L_A))

    D_RGB = (D[..., np.newaxis] * Y_w[..., np.newaxis] / RGB_w + 1 -
             D[..., np.newaxis])
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    if C is None and M is not None:
        C = M / spow(F_L, 0.25)
    elif C is None:
        raise ValueError('Either "C" or "M" correlate must be defined in '
                         'the "CAM16_specification" argument!')

    # Step 2
    # Computing temporary magnitude quantity :math:`t`.
    t = temporary_magnitude_quantity_inverse(C, J, n)

    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing achromatic response :math:`A` for the stimulus.
    A = achromatic_response_inverse(A_w, J, surround.c, z)

    # Computing *P_1* to *P_3*.
    P_n = P(surround.N_c, N_cb, e_t, t, A, N_bb)
    _P_1, P_2, _P_3 = tsplit(P_n)

    # Step 3
    # Computing opponent colour dimensions :math:`a` and :math:`b`.
    a, b = tsplit(opponent_colour_dimensions_inverse(P_n, h))

    # Step 4
    # Computing post-adaptation non linear response compression matrix.
    RGB_a = post_adaptation_non_linear_response_compression_matrix(P_2, a, b)

    # Step 5
    # Applying inverse post-adaptation non linear response compression.
    RGB_c = post_adaptation_non_linear_response_compression_inverse(RGB_a, F_L)

    # Step 6
    RGB = RGB_c / D_RGB

    # Step 7
    XYZ = dot_vector(M_16_INVERSE, RGB)

    return from_range_100(XYZ)
Exemple #2
0
def CAM16_to_XYZ(
    specification: CAM_Specification_CAM16,
    XYZ_w: ArrayLike,
    L_A: FloatingOrArrayLike,
    Y_b: FloatingOrArrayLike,
    surround: Union[
        InductionFactors_CIECAM02,
        InductionFactors_CAM16] = VIEWING_CONDITIONS_CAM16["Average"],
    discount_illuminant: Boolean = False,
) -> NDArray:
    """
    Convert from *CAM16* specification to *CIE XYZ* tristimulus values.

    Parameters
    ----------
    specification : CAM_Specification_CAM16
        *CAM16* colour appearance model specification. Correlate of
        *Lightness* :math:`J`, correlate of *chroma* :math:`C` or correlate of
        *colourfulness* :math:`M` and *hue* angle :math:`h` in degrees must be
        specified, e.g. :math:`JCh` or :math:`JMh`.
    XYZ_w
        *CIE XYZ* tristimulus values of reference white.
    L_A
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b
        Luminous factor of background :math:`Y_b` such as
        :math:`Y_b = 100 x L_b / L_w` where :math:`L_w` is the luminance of the
        light source and :math:`L_b` is the luminance of the background. For
        viewing images, :math:`Y_b` can be the average :math:`Y` value for the
        pixels in the entire image, or frequently, a :math:`Y` value of 20,
        approximate an :math:`L^*` of 50 is used.
    surround
        Surround viewing conditions.
    discount_illuminant
        Discount the illuminant.

    Returns
    -------
    :class:`numpy.ndarray`
        *CIE XYZ* tristimulus values.

    Raises
    ------
    ValueError
        If neither *C* or *M* correlates have been defined in the
        ``CAM_Specification_CAM16`` argument.

    Notes
    -----
    +-------------------------------+-----------------------+---------------+
    | **Domain**                    | **Scale - Reference** | **Scale - 1** |
    +===============================+=======================+===============+
    | ``CAM_Specification_CAM16.J`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.C`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.h`` | [0, 360]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.s`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.Q`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.M`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.H`` | [0, 360]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``XYZ_w``                     | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+

    +-----------+-----------------------+---------------+
    | **Range** | **Scale - Reference** | **Scale - 1** |
    +===========+=======================+===============+
    | ``XYZ``   | [0, 100]              | [0, 1]        |
    +-----------+-----------------------+---------------+

    References
    ----------
    :cite:`Li2017`

    Examples
    --------
    >>> specification = CAM_Specification_CAM16(J=41.731207905126638,
    ...                                         C=0.103355738709070,
    ...                                         h=217.067959767393010)
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> CAM16_to_XYZ(specification, XYZ_w, L_A, Y_b)  # doctest: +ELLIPSIS
    array([ 19.01...,  20...  ,  21.78...])
    """

    J, C, h, _s, _Q, M, _H, _HC = astuple(specification)

    J = to_domain_100(J)
    C = to_domain_100(C)
    h = to_domain_degrees(h)
    M = to_domain_100(M)
    L_A = as_float_array(L_A)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = vector_dot(MATRIX_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else ones(L_A.shape))

    n, F_L, N_bb, N_cb, z = viewing_condition_dependent_parameters(
        Y_b, Y_w, L_A)

    D_RGB = (D[..., np.newaxis] * Y_w[..., np.newaxis] / RGB_w + 1 -
             D[..., np.newaxis])
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non-linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    if has_only_nan(C) and not has_only_nan(M):
        C = M / spow(F_L, 0.25)
    elif has_only_nan(C):
        raise ValueError('Either "C" or "M" correlate must be defined in '
                         'the "CAM_Specification_CAM16" argument!')

    # Step 2
    # Computing temporary magnitude quantity :math:`t`.
    t = temporary_magnitude_quantity_inverse(C, J, n)

    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing achromatic response :math:`A` for the stimulus.
    A = achromatic_response_inverse(A_w, J, surround.c, z)

    # Computing *P_1* to *P_3*.
    P_n = P(surround.N_c, N_cb, e_t, t, A, N_bb)
    _P_1, P_2, _P_3 = tsplit(P_n)

    # Step 3
    # Computing opponent colour dimensions :math:`a` and :math:`b`.
    a, b = tsplit(opponent_colour_dimensions_inverse(P_n, h))

    # Step 4
    # Applying post-adaptation non-linear response compression matrix.
    RGB_a = matrix_post_adaptation_non_linear_response_compression(P_2, a, b)

    # Step 5
    # Applying inverse post-adaptation non-linear response compression.
    RGB_c = post_adaptation_non_linear_response_compression_inverse(RGB_a, F_L)

    # Step 6
    RGB = RGB_c / D_RGB

    # Step 7
    XYZ = vector_dot(MATRIX_INVERSE_16, RGB)

    return from_range_100(XYZ)