Exemple #1
0
    def test_has_only_nan(self):
        """Test :func:`colour.utilities.array.has_only_nan` definition."""

        self.assertTrue(has_only_nan(None))

        self.assertTrue(has_only_nan([None, None]))

        self.assertFalse(has_only_nan([True, None]))

        self.assertFalse(has_only_nan([0.1, np.nan, 0.3]))
Exemple #2
0
def CIECAM02_to_XYZ(
    specification: CAM_Specification_CIECAM02,
    XYZ_w: ArrayLike,
    L_A: FloatingOrArrayLike,
    Y_b: FloatingOrArrayLike,
    surround: InductionFactors_CIECAM02 = VIEWING_CONDITIONS_CIECAM02[
        "Average"],
    discount_illuminant: Boolean = False,
) -> NDArray:
    """
    Convert from *CIECAM02* specification to *CIE XYZ* tristimulus values.

    Parameters
    ----------
    specification
        *CIECAM02* colour appearance model specification. Correlate of
        *Lightness* :math:`J`, correlate of *chroma* :math:`C` or correlate of
        *colourfulness* :math:`M` and *hue* angle :math:`h` in degrees must be
        specified, e.g. :math:`JCh` or :math:`JMh`.
    XYZ_w
        *CIE XYZ* tristimulus values of reference white.
    L_A
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b
        Luminous factor of background :math:`Y_b` such as
        :math:`Y_b = 100 x L_b / L_w` where :math:`L_w` is the luminance of the
        light source and :math:`L_b` is the luminance of the background. For
        viewing images, :math:`Y_b` can be the average :math:`Y` value for the
        pixels in the entire image, or frequently, a :math:`Y` value of 20,
        approximate an :math:`L^*` of 50 is used.
    surround
        Surround viewing conditions.
    discount_illuminant
        Discount the illuminant.

    Returns
    -------
    :class:`numpy.ndarray`
        *CIE XYZ* tristimulus values.

    Raises
    ------
    ValueError
        If neither *C* or *M* correlates have been defined in the
        ``CAM_Specification_CIECAM02`` argument.

    Notes
    -----
    +----------------------------------+-----------------------\
+---------------+
    | **Domain**                       | **Scale - Reference** \
| **Scale - 1** |
    +==================================+=======================\
+===============+
    | ``CAM_Specification_CIECAM02.J`` | [0, 100]              \
| [0, 1]        |
    +----------------------------------+-----------------------\
+---------------+
    | ``CAM_Specification_CIECAM02.C`` | [0, 100]              \
| [0, 1]        |
    +----------------------------------+-----------------------\
+---------------+
    | ``CAM_Specification_CIECAM02.h`` | [0, 360]              \
| [0, 1]        |
    +----------------------------------+-----------------------\
+---------------+
    | ``CAM_Specification_CIECAM02.s`` | [0, 100]              \
| [0, 1]        |
    +----------------------------------+-----------------------\
+---------------+
    | ``CAM_Specification_CIECAM02.Q`` | [0, 100]              \
| [0, 1]        |
    +----------------------------------+-----------------------\
+---------------+
    | ``CAM_Specification_CIECAM02.M`` | [0, 100]              \
| [0, 1]        |
    +----------------------------------+-----------------------\
+---------------+
    | ``CAM_Specification_CIECAM02.H`` | [0, 360]              \
| [0, 1]        |
    +----------------------------------+-----------------------\
+---------------+
    | ``XYZ_w``                        | [0, 100]              \
| [0, 1]        |
    +----------------------------------+-----------------------\
+---------------+

    +-----------+-----------------------+---------------+
    | **Range** | **Scale - Reference** | **Scale - 1** |
    +===========+=======================+===============+
    | ``XYZ``   | [0, 100]              | [0, 1]        |
    +-----------+-----------------------+---------------+

    References
    ----------
    :cite:`Fairchild2004c`, :cite:`Luo2013`, :cite:`Moroneya`,
    :cite:`Wikipedia2007a`

    Examples
    --------
    >>> specification = CAM_Specification_CIECAM02(J=41.731091132513917,
    ...                                            C=0.104707757171031,
    ...                                            h=219.048432658311780)
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> CIECAM02_to_XYZ(specification, XYZ_w, L_A, Y_b)  # doctest: +ELLIPSIS
    array([ 19.01...,  20...  ,  21.78...])
    """

    J, C, h, _s, _Q, M, _H, _HC = astuple(specification)

    J = to_domain_100(J)
    C = to_domain_100(C)
    h = to_domain_degrees(h)
    M = to_domain_100(M)
    L_A = as_float_array(L_A)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)

    n, F_L, N_bb, N_cb, z = viewing_condition_dependent_parameters(
        Y_b, Y_w, L_A)

    if has_only_nan(C) and not has_only_nan(M):
        C = M / spow(F_L, 0.25)
    elif has_only_nan(C):
        raise ValueError('Either "C" or "M" correlate must be defined in '
                         'the "CAM_Specification_CIECAM02" argument!')

    # Converting *CIE XYZ* tristimulus values to *CMCCAT2000* transform
    # sharpened *RGB* values.
    RGB_w = vector_dot(CAT_CAT02, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (degree_of_adaptation(surround.F, L_A)
         if not discount_illuminant else ones(L_A.shape))

    # Computing full chromatic adaptation.
    RGB_wc = full_chromatic_adaptation_forward(RGB_w, RGB_w, Y_w, D)

    # Converting to *Hunt-Pointer-Estevez* colourspace.
    RGB_pw = RGB_to_rgb(RGB_wc)

    # Applying post-adaptation non-linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_pw, F_L)

    # Computing achromatic response for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Computing temporary magnitude quantity :math:`t`.
    t = temporary_magnitude_quantity_inverse(C, J, n)

    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing achromatic response :math:`A` for the stimulus.
    A = achromatic_response_inverse(A_w, J, surround.c, z)

    # Computing *P_1* to *P_3*.
    P_n = P(surround.N_c, N_cb, e_t, t, A, N_bb)
    _P_1, P_2, _P_3 = tsplit(P_n)

    # Computing opponent colour dimensions :math:`a` and :math:`b`.
    a, b = tsplit(opponent_colour_dimensions_inverse(P_n, h))

    # Applying post-adaptation non-linear response compression matrix.
    RGB_a = matrix_post_adaptation_non_linear_response_compression(P_2, a, b)

    # Applying inverse post-adaptation non-linear response compression.
    RGB_p = post_adaptation_non_linear_response_compression_inverse(RGB_a, F_L)

    # Converting to *Hunt-Pointer-Estevez* colourspace.
    RGB_c = rgb_to_RGB(RGB_p)

    # Applying inverse full chromatic adaptation.
    RGB = full_chromatic_adaptation_inverse(RGB_c, RGB_w, Y_w, D)

    # Converting *CMCCAT2000* transform sharpened *RGB* values to *CIE XYZ*
    # tristimulus values.
    XYZ = vector_dot(CAT_INVERSE_CAT02, RGB)

    return from_range_100(XYZ)
Exemple #3
0
def CAM16_to_XYZ(
    specification: CAM_Specification_CAM16,
    XYZ_w: ArrayLike,
    L_A: FloatingOrArrayLike,
    Y_b: FloatingOrArrayLike,
    surround: Union[
        InductionFactors_CIECAM02,
        InductionFactors_CAM16] = VIEWING_CONDITIONS_CAM16["Average"],
    discount_illuminant: Boolean = False,
) -> NDArray:
    """
    Convert from *CAM16* specification to *CIE XYZ* tristimulus values.

    Parameters
    ----------
    specification : CAM_Specification_CAM16
        *CAM16* colour appearance model specification. Correlate of
        *Lightness* :math:`J`, correlate of *chroma* :math:`C` or correlate of
        *colourfulness* :math:`M` and *hue* angle :math:`h` in degrees must be
        specified, e.g. :math:`JCh` or :math:`JMh`.
    XYZ_w
        *CIE XYZ* tristimulus values of reference white.
    L_A
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    Y_b
        Luminous factor of background :math:`Y_b` such as
        :math:`Y_b = 100 x L_b / L_w` where :math:`L_w` is the luminance of the
        light source and :math:`L_b` is the luminance of the background. For
        viewing images, :math:`Y_b` can be the average :math:`Y` value for the
        pixels in the entire image, or frequently, a :math:`Y` value of 20,
        approximate an :math:`L^*` of 50 is used.
    surround
        Surround viewing conditions.
    discount_illuminant
        Discount the illuminant.

    Returns
    -------
    :class:`numpy.ndarray`
        *CIE XYZ* tristimulus values.

    Raises
    ------
    ValueError
        If neither *C* or *M* correlates have been defined in the
        ``CAM_Specification_CAM16`` argument.

    Notes
    -----
    +-------------------------------+-----------------------+---------------+
    | **Domain**                    | **Scale - Reference** | **Scale - 1** |
    +===============================+=======================+===============+
    | ``CAM_Specification_CAM16.J`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.C`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.h`` | [0, 360]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.s`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.Q`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.M`` | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_CAM16.H`` | [0, 360]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``XYZ_w``                     | [0, 100]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+

    +-----------+-----------------------+---------------+
    | **Range** | **Scale - Reference** | **Scale - 1** |
    +===========+=======================+===============+
    | ``XYZ``   | [0, 100]              | [0, 1]        |
    +-----------+-----------------------+---------------+

    References
    ----------
    :cite:`Li2017`

    Examples
    --------
    >>> specification = CAM_Specification_CAM16(J=41.731207905126638,
    ...                                         C=0.103355738709070,
    ...                                         h=217.067959767393010)
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> Y_b = 20.0
    >>> CAM16_to_XYZ(specification, XYZ_w, L_A, Y_b)  # doctest: +ELLIPSIS
    array([ 19.01...,  20...  ,  21.78...])
    """

    J, C, h, _s, _Q, M, _H, _HC = astuple(specification)

    J = to_domain_100(J)
    C = to_domain_100(C)
    h = to_domain_degrees(h)
    M = to_domain_100(M)
    L_A = as_float_array(L_A)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)

    # Step 0
    # Converting *CIE XYZ* tristimulus values to sharpened *RGB* values.
    RGB_w = vector_dot(MATRIX_16, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (np.clip(degree_of_adaptation(surround.F, L_A), 0, 1)
         if not discount_illuminant else ones(L_A.shape))

    n, F_L, N_bb, N_cb, z = viewing_condition_dependent_parameters(
        Y_b, Y_w, L_A)

    D_RGB = (D[..., np.newaxis] * Y_w[..., np.newaxis] / RGB_w + 1 -
             D[..., np.newaxis])
    RGB_wc = D_RGB * RGB_w

    # Applying forward post-adaptation non-linear response compression.
    RGB_aw = post_adaptation_non_linear_response_compression_forward(
        RGB_wc, F_L)

    # Computing achromatic responses for the whitepoint.
    A_w = achromatic_response_forward(RGB_aw, N_bb)

    # Step 1
    if has_only_nan(C) and not has_only_nan(M):
        C = M / spow(F_L, 0.25)
    elif has_only_nan(C):
        raise ValueError('Either "C" or "M" correlate must be defined in '
                         'the "CAM_Specification_CAM16" argument!')

    # Step 2
    # Computing temporary magnitude quantity :math:`t`.
    t = temporary_magnitude_quantity_inverse(C, J, n)

    # Computing eccentricity factor *e_t*.
    e_t = eccentricity_factor(h)

    # Computing achromatic response :math:`A` for the stimulus.
    A = achromatic_response_inverse(A_w, J, surround.c, z)

    # Computing *P_1* to *P_3*.
    P_n = P(surround.N_c, N_cb, e_t, t, A, N_bb)
    _P_1, P_2, _P_3 = tsplit(P_n)

    # Step 3
    # Computing opponent colour dimensions :math:`a` and :math:`b`.
    a, b = tsplit(opponent_colour_dimensions_inverse(P_n, h))

    # Step 4
    # Applying post-adaptation non-linear response compression matrix.
    RGB_a = matrix_post_adaptation_non_linear_response_compression(P_2, a, b)

    # Step 5
    # Applying inverse post-adaptation non-linear response compression.
    RGB_c = post_adaptation_non_linear_response_compression_inverse(RGB_a, F_L)

    # Step 6
    RGB = RGB_c / D_RGB

    # Step 7
    XYZ = vector_dot(MATRIX_INVERSE_16, RGB)

    return from_range_100(XYZ)
Exemple #4
0
def ZCAM_to_XYZ(
    specification: CAM_Specification_ZCAM,
    XYZ_w: ArrayLike,
    L_A: FloatingOrArrayLike,
    Y_b: FloatingOrArrayLike,
    surround: InductionFactors_ZCAM = VIEWING_CONDITIONS_ZCAM["Average"],
    discount_illuminant: Boolean = False,
) -> NDArray:
    """
    Convert from *ZCAM* specification to *CIE XYZ* tristimulus values.

    Parameters
    ----------
    specification
         *ZCAM* colour appearance model specification.
         Correlate of *Lightness* :math:`J`, correlate of *chroma* :math:`C` or
         correlate of *colourfulness* :math:`M` and *hue* angle :math:`h` in
         degrees must be specified, e.g. :math:`JCh` or :math:`JMh`.
    XYZ_w
        Absolute *CIE XYZ* tristimulus values of the white under reference
        illuminant.
    L_A
        Test adapting field *luminance* :math:`L_A` in :math:`cd/m^2` such as
        :math:`L_A = L_w * Y_b / 100` (where :math:`L_w` is luminance of the
        reference white and :math:`Y_b` is the background luminance factor).
    Y_b
        Luminous factor of background :math:`Y_b` such as
        :math:`Y_b = 100 x L_b / L_w` where :math:`L_w` is the luminance of the
        light source and :math:`L_b` is the luminance of the background. For
        viewing images, :math:`Y_b` can be the average :math:`Y` value for the
        pixels in the entire image, or frequently, a :math:`Y` value of 20,
        approximate an :math:`L^*` of 50 is used.
    surround
        Surround viewing conditions induction factors.
    discount_illuminant
        Truth value indicating if the illuminant should be discounted.

    Returns
    -------
    :class:`numpy.ndarray`
        *CIE XYZ* tristimulus values.

    Raises
    ------
    ValueError
        If neither *C* or *M* correlates have been defined in the
        ``CAM_Specification_ZCAM`` argument.

    Warnings
    --------
    The underlying *SMPTE ST 2084:2014* transfer function is an absolute
    transfer function.

    Notes
    -----
    -   *Safdar, Hardeberg and Luo (2021)* does not specify how the chromatic
        adaptation to *CIE Standard Illuminant D65* in *Step 0* should be
        performed. A one-step *Von Kries* chromatic adaptation transform is not
        symetrical or transitive when a degree of adptation is involved.
        *Safdar, Hardeberg and Luo (2018)* uses *Zhai and Luo (2018)* two-steps
        chromatic adaptation transform, thus it seems sensible to adopt this
        transform for the *ZCAM* colour appearance model until more information
        is available. It is worth noting that a one-step *Von Kries* chromatic
        adaptation transform with support for degree of adaptation produces
        values closer to the supplemental document compared to the
        *Zhai and Luo (2018)* two-steps chromatic adaptation transform but then
        the *ZCAM* colour appearance model does not round-trip properly.
    -   *Step 4* of the inverse model uses a rounded exponent of 1.3514
        preventing the model to round-trip properly. Given that this
        implementation takes some liberties with respect to the chromatic
        adaptation transform to use, it was deemed appropriate to use an
        exponent value that enables the *ZCAM* colour appearance model to
        round-trip.
    -   The underlying *SMPTE ST 2084:2014* transfer function is an absolute
        transfer function, thus the domain and range values for the *Reference*
        and *1* scales are only indicative that the data is not affected by
        scale transformations.

    +-------------------------------+-----------------------+---------------+
    | **Domain**                    | **Scale - Reference** | **Scale - 1** |
    +===============================+=======================+===============+
    | ``CAM_Specification_ZCAM.J``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.C``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.h``  | [0, 360]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.s``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.Q``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.M``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.H``  | [0, 400]              | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.HC`` | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.V``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.K``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+
    | ``CAM_Specification_ZCAM.H``  | [UN]                  | [0, 1]        |
    +-------------------------------+-----------------------+---------------+

    +-----------+-----------------------+---------------+
    | **Range** | **Scale - Reference** | **Scale - 1** |
    +===========+=======================+===============+
    | ``XYZ``   | [UN]                  | [UN]          |
    +-----------+-----------------------+---------------+

    References
    ----------
    :cite:`Safdar2018`, :cite:`Safdar2021`, :cite:`Zhai2018`

    Examples
    --------
    >>> specification = CAM_Specification_ZCAM(J=92.250443780723629,
    ...                                        C=3.0216926733329013,
    ...                                        h=196.32457375575581)
    >>> XYZ_w = np.array([256, 264, 202])
    >>> L_A = 264
    >>> Y_b = 100
    >>> surround = VIEWING_CONDITIONS_ZCAM['Average']
    >>> ZCAM_to_XYZ(specification, XYZ_w, L_A, Y_b, surround)
    ... # doctest: +ELLIPSIS
    array([ 185.,  206.,  163.])
    """

    J_z, C_z, h_z, _S_z, _Q_z, M_z, _H, _H_Z, _V_z, _K_z, _W_z = astuple(
        specification)

    J_z = to_domain_1(J_z)
    C_z = to_domain_1(C_z)
    h_z = to_domain_degrees(h_z)
    M_z = to_domain_1(M_z)

    XYZ_w = to_domain_1(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)
    L_A = as_float_array(L_A)
    Y_b = as_float_array(Y_b)

    F_s, F, c, N_c = surround

    # Step 0 (Forward) - Chromatic adaptation from reference illuminant to
    # "CIE Standard Illuminant D65" illuminant using "CAT02".
    # Computing degree of adaptation :math:`D`.
    D = (degree_of_adaptation(surround.F, L_A)
         if not discount_illuminant else ones(L_A.shape))

    # Step 1 (Forward) - Computing factors related with viewing conditions and
    # independent of the test stimulus.
    # Background factor :math:`F_b`
    F_b = np.sqrt(Y_b / Y_w)
    # Luminance level adaptation factor :math:`F_L`
    F_L = 0.171 * spow(L_A, 1 / 3) * (1 - np.exp(-48 / 9 * L_A))

    # Step 2 (Forward) - Computing achromatic response (:math:`I_{z,w}`),
    # redness-greenness (:math:`a_{z,w}`), and yellowness-blueness
    # (:math:`b_{z,w}`).
    with domain_range_scale("ignore"):
        I_z_w, _A_z_w, B_z_w = tsplit(
            XYZ_to_Izazbz(XYZ_w, method="Safdar 2021"))

    # Step 1 (Inverse) - Computing achromatic response (:math:`I_z`).
    Q_z_p = (1.6 * F_s) / F_b**0.12
    Q_z_m = F_s**2.2 * F_b**0.5 * spow(F_L, 0.2)
    Q_z_w = 2700 * spow(I_z_w, Q_z_p) * Q_z_m

    I_z_p = (F_b**0.12) / (1.6 * F_s)
    I_z_d = 2700 * 100 * Q_z_m

    I_z = spow((J_z * Q_z_w) / I_z_d, I_z_p)

    # Step 2 (Inverse) - Computing chroma :math:`C_z`.
    if has_only_nan(M_z) and not has_only_nan(C_z):
        M_z = (C_z * Q_z_w) / 100
    elif has_only_nan(M_z):
        raise ValueError('Either "C" or "M" correlate must be defined in '
                         'the "CAM_Specification_ZCAM" argument!')

    # Step 3 (Inverse) - Computing hue angle :math:`h_z`
    # :math:`h_z` is currently required as an input.

    # Computing eccentricity factor :math:`e_z`.
    e_z = 1.015 + np.cos(np.radians(89.038 + h_z % 360))
    h_z_r = np.radians(h_z)

    # Step 4 (Inverse) - Computing redness-greenness (:math:`a_z`), and
    # yellowness-blueness (:math:`b_z`).
    # C_z_p_e = 1.3514
    C_z_p_e = 50 / 37
    C_z_p = spow(
        (M_z * spow(I_z_w, 0.78) * F_b**0.1) /
        (100 * e_z**0.068 * spow(F_L, 0.2)),
        C_z_p_e,
    )
    a_z = C_z_p * np.cos(h_z_r)
    b_z = C_z_p * np.sin(h_z_r)

    # Step 5 (Inverse) - Computing tristimulus values :math:`XYZ_{D65}`.
    with domain_range_scale("ignore"):
        XYZ_D65 = Izazbz_to_XYZ(tstack([I_z, a_z, b_z]), method="Safdar 2021")

    XYZ = chromatic_adaptation_Zhai2018(XYZ_D65,
                                        TVS_D65,
                                        XYZ_w,
                                        D,
                                        D,
                                        transform="CAT02")

    return from_range_1(XYZ)
Exemple #5
0
def Kim2009_to_XYZ(
    specification: CAM_Specification_Kim2009,
    XYZ_w: ArrayLike,
    L_A: FloatingOrArrayLike,
    media: MediaParameters_Kim2009 = MEDIA_PARAMETERS_KIM2009["CRT Displays"],
    surround: InductionFactors_Kim2009 = VIEWING_CONDITIONS_KIM2009["Average"],
    discount_illuminant: Boolean = False,
    n_c: Floating = 0.57,
) -> NDArray:
    """
    Convert from *Kim, Weyrich and Kautz (2009)* specification to *CIE XYZ*
    tristimulus values.

    Parameters
    ----------
    specification
         *Kim, Weyrich and Kautz (2009)* colour appearance model specification.
         Correlate of *Lightness* :math:`J`, correlate of *chroma* :math:`C` or
         correlate of *colourfulness* :math:`M` and *hue* angle :math:`h` in
         degrees must be specified, e.g. :math:`JCh` or :math:`JMh`.
    XYZ_w
        *CIE XYZ* tristimulus values of reference white.
    L_A
        Adapting field *luminance* :math:`L_A` in :math:`cd/m^2`, (often taken
        to be 20% of the luminance of a white object in the scene).
    media
        Media parameters.
    surroundl
        Surround viewing conditions induction factors.
    discount_illuminant
        Discount the illuminant.
    n_c
        Cone response sigmoidal curve modulating factor :math:`n_c`.

    Returns
    -------
    :class:`numpy.ndarray`
        *CIE XYZ* tristimulus values.

    Raises
    ------
    ValueError
        If neither *C* or *M* correlates have been defined in the
        ``CAM_Specification_Kim2009`` argument.

    Notes
    -----
    +---------------------------------+-----------------------+---------------+
    | **Domain**                      | **Scale - Reference** | **Scale - 1** |
    +=================================+=======================+===============+
    | ``CAM_Specification_Kim2009.J`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.C`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.h`` | [0, 360]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.s`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.Q`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.M`` | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``CAM_Specification_Kim2009.H`` | [0, 360]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+
    | ``XYZ_w``                       | [0, 100]              | [0, 1]        |
    +---------------------------------+-----------------------+---------------+

    +-----------+-----------------------+---------------+
    | **Range** | **Scale - Reference** | **Scale - 1** |
    +===========+=======================+===============+
    | ``XYZ``   | [0, 100]              | [0, 1]        |
    +-----------+-----------------------+---------------+

    References
    ----------
    :cite:`Kim2009`

    Examples
    --------
    >>> specification = CAM_Specification_Kim2009(J=28.861908975839647,
    ...                                           C=0.5592455924373706,
    ...                                           h=219.04806677662953)
    >>> XYZ_w = np.array([95.05, 100.00, 108.88])
    >>> L_A = 318.31
    >>> media = MEDIA_PARAMETERS_KIM2009['CRT Displays']
    >>> surround = VIEWING_CONDITIONS_KIM2009['Average']
    >>> Kim2009_to_XYZ(specification, XYZ_w, L_A, media, surround)
    ... # doctest: +ELLIPSIS
    array([ 19.0099995...,  19.9999999...,  21.7800000...])
    """

    J, C, h, _s, _Q, M, _H, _HC = astuple(specification)

    J = to_domain_100(J)
    C = to_domain_100(C)
    h = to_domain_degrees(h)
    M = to_domain_100(M)
    L_A = as_float_array(L_A)
    XYZ_w = to_domain_100(XYZ_w)
    _X_w, Y_w, _Z_w = tsplit(XYZ_w)

    # Converting *CIE XYZ* tristimulus values to *CMCCAT2000* transform
    # sharpened *RGB* values.
    RGB_w = vector_dot(CAT_CAT02, XYZ_w)

    # Computing degree of adaptation :math:`D`.
    D = (
        degree_of_adaptation(surround.F, L_A)
        if not discount_illuminant
        else ones(L_A.shape)
    )

    # Computing full chromatic adaptation.
    XYZ_wc = full_chromatic_adaptation_forward(RGB_w, RGB_w, Y_w, D)

    # Converting to *Hunt-Pointer-Estevez* colourspace.
    LMS_w = RGB_to_rgb(XYZ_wc)

    # n_q = 0.1308
    # J = Q / spow(Y_w, n_q)
    if has_only_nan(C) and not has_only_nan(M):
        a_m, b_m = 0.11, 0.61
        C = M / (a_m * np.log10(Y_w) + b_m)
    elif has_only_nan(C):
        raise ValueError(
            'Either "C" or "M" correlate must be defined in '
            'the "CAM_Specification_Kim2009" argument!'
        )

    # Cones absolute response.
    LMS_w_n_c = spow(LMS_w, n_c)
    L_A_n_c = spow(L_A, n_c)
    LMS_wp = LMS_w_n_c / (LMS_w_n_c + L_A_n_c)

    # Achromatic signal :math:`A_w`
    v_A = np.array([40, 20, 1])
    A_w = np.sum(v_A * LMS_wp, axis=-1) / 61

    # Perceived *Lightness* :math:`J_p`.
    J_p = (J / 100 - 1) / media.E + 1

    # Achromatic signal :math:`A`.
    a_j, b_j, n_j, o_j = 0.89, 0.24, 3.65, 0.65
    J_p_n_j = spow(J_p, n_j)
    A = A_w * ((a_j * J_p_n_j) / (J_p_n_j + spow(o_j, n_j)) + b_j)

    # Opponent signals :math:`a` and :math:`b`.
    a_k, n_k = 456.5, 0.62
    C_a_k_n_k = spow(C / a_k, 1 / n_k)
    hr = np.radians(h)
    a, b = np.cos(hr) * C_a_k_n_k, np.sin(hr) * C_a_k_n_k

    # Cones absolute response.
    M = np.array(
        [
            [1.0000, 0.3215, 0.2053],
            [1.0000, -0.6351, -0.1860],
            [1.0000, -0.1568, -4.4904],
        ]
    )
    LMS_p = vector_dot(M, tstack([A, a, b]))
    LMS = spow((-spow(L_A, n_c) * LMS_p) / (LMS_p - 1), 1 / n_c)

    # Converting to *Hunt-Pointer-Estevez* colourspace.
    RGB_c = rgb_to_RGB(LMS)

    # Applying inverse full chromatic adaptation.
    RGB = full_chromatic_adaptation_inverse(RGB_c, RGB_w, Y_w, D)

    XYZ = vector_dot(CAT_INVERSE_CAT02, RGB)

    return from_range_100(XYZ)