Exemple #1
0
def get_eval_parameters(opt, force_categories=None):
    evaluate = DD()

    if opt.eval_sampler == "beam":
        evaluate.bs = opt.beam_size
    elif opt.eval_sampler == "greedy":
        evaluate.bs = 1
    elif opt.eval_sampler == "topk":
        evaluate.k = opt.topk_size

    evaluate.smax = opt.gen_seqlength
    evaluate.sample = opt.eval_sampler

    evaluate.numseq = opt.num_sequences

    evaluate.gs = opt.generate_sequences
    evaluate.es = opt.evaluate_sequences

    if opt.dataset == "atomic":
        if "eval_categories" in opt and force_categories is None:
            evaluate.categories = opt.eval_categories
        else:
            evaluate.categories = force_categories

    return evaluate
Exemple #2
0
def get_data_parameters(opt, experiment, dataset):
    data = DD()
    if dataset == "atomic":
        data.categories = sorted(opt.categories)

    elif dataset == "conceptnet":
        data.rel = opt.relation_format
        data.trainsize = opt.training_set_size
        data.devversion = opt.development_set_versions_to_use
        data.maxe1 = opt.max_event_1_size
        data.maxe2 = opt.max_event_2_size

    return data