Exemple #1
0
def main():
    global model_def
    global dataset
    global train
    args = argument_parser()
    config_module = importlib.import_module(args.config)
    configs = config_module.config
    model_def = importlib.import_module(args.model).model
    dataset = importlib.import_module(args.dataset).dataset
    train = importlib.import_module(args.trainer).train

    if 'algorithm' in configs.keys():
        comet_config = parse_comet_config(configs)
        opt = Optimizer(comet_config,
                        api_key=configs['API_KEY'],
                        project_name=configs['project_name'])
        for exp in opt.get_experiments():
            experiment = exp
            config = get_parameters(experiment, configs)
            train(
                **{
                    'config': config,
                    'model_def': model_def,
                    'dataset': dataset,
                    'experiment': experiment
                })
    else:
        if args.experiment:
            experiment = Experiment(api_key=configs['API_KEY'],
                                    project_name=configs['project_name'],
                                    workspace=configs['workspace'])
        else:
            experiment = None
        tried_configs = []
        end = False
        while True:
            importlib.reload(config_module)
            configs = config_module.config
            possible_configs = get_configurations(configs)
            for config_idx, config in enumerate(possible_configs):
                if config_idx == len(possible_configs) - 1:
                    end = True
                if config in tried_configs:
                    continue
                else:
                    tried_configs.append(config)
                    train(
                        **{
                            'config': config,
                            'model_def': model_def,
                            'dataset': dataset,
                            'experiment': experiment
                        })
                    break
            if end:
                break
        print("******************End of the training session****************")
def main():

    num_classes = 10

    # the data, shuffled and split between train and test sets
    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.reshape(60000, 784)
    x_test = x_test.reshape(10000, 784)
    x_train = x_train.astype("float32")
    x_test = x_test.astype("float32")
    x_train /= 255
    x_test /= 255
    print(x_train.shape[0], "train samples")
    print(x_test.shape[0], "test samples")

    # convert class vectors to binary class matrices
    y_train = keras.utils.to_categorical(y_train, num_classes)
    y_test = keras.utils.to_categorical(y_test, num_classes)

    config = {
        "algorithm": "bayes",
        "name": "Optimize MNIST Network",
        "spec": {
            "maxCombo": 10,
            "objective": "minimize",
            "metric": "loss"
        },
        "parameters": {
            "first_layer_units": {
                "type": "integer",
                "min": 1,
                "max": 1000
            }
        },
        "trials": 1,
    }

    opt = Optimizer(config)

    for experiment in opt.get_experiments():
        flu = experiment.get_parameter("first_layer_units")
        loss = fit(experiment, x_train, y_train, x_test, y_test, 3, 120, flu)
        # Reverse the score for minimization
        experiment.log_metric("loss", loss)
def main(cfg: DictConfig):
    train_length = 500
    val_length = 30
    test_length = 585

    opt = Optimizer(
        config,
        api_key='SWhvV0XPkHV8tPdU8Nv67EXxU',
        project_name=f'stock-gcn-experiment-sequences-{train_length}days')
    for experiment in opt.get_experiments():
        seed = 1
        seed_everything(seed)

        hidden_layer = experiment.get_parameter('hidden_layer')
        hidden_feature = experiment.get_parameter('hidden_feature')
        activation = experiment.get_parameter('activation')
        sequence_length = experiment.get_parameter('sequence_length')

        KOSPI200Dataset.setup(train_length=train_length,
                              val_length=val_length,
                              test_length=test_length,
                              sequence_length=sequence_length
                              )  # 2020.07.03 615일(개장일 기준) 이전이 2018.01.02

        comet_logger = CometLogger(
            api_key="SWhvV0XPkHV8tPdU8Nv67EXxU",
            workspace="dldjwls3",  # Optional
            project_name=f'stock-gcn-experiment-sequences-{train_length}days',
            experiment_name=
            f'gcn_{sequence_length}_{activation}_{hidden_layer}_{hidden_feature}',
            experiment_key=experiment.get_key())

        model = Baseline(seed=seed,
                         sequence_length=sequence_length,
                         num_feature=5,
                         hidden_layer=hidden_layer,
                         hidden_feature=hidden_feature,
                         activation=activation)
        trainer = Trainer(max_epochs=120, gpus=-1, logger=comet_logger)
        trainer.fit(model)
Exemple #4
0
def optimize(max_n,
             model_name,
             dataset_name,
             batch_size,
             n_epochs,
             use_comet,
             comet_name,
             model_module_index=None):
    dataset_config, model = initialize_model(dataset_name, model_name,
                                             model_module_index)
    rocket = None

    #if use_comet:
    #    rocket = CometConnection(comet_name=comet_name, dataset_config=dataset_config)
    # TODO: add the optimizer code to comet_connection.py

    params_range = get_params_range(model)
    params_range['spec']['maxCombo'] = max_n
    optimizer = Optimizer(params_range, api_key=COMET_KEY)

    for experiment in optimizer.get_experiments(project_name=PROJECT_NAME):
        experiment.set_name(comet_name)
        experiment.add_tag("optimizer_experiment")
        model_exp = model
        p = {
            k: experiment.get_parameter(k)
            for k in params_range['parameters'].keys()
        }
        model_exp.params = p
        model_exp = train_model(model,
                                dataset_name,
                                dataset_config,
                                batch_size,
                                n_epochs,
                                compile_dict=COMPILE_DICT)
        loss = model_exp.test_results[0]
        experiment.log_metric("loss", loss)
Exemple #5
0
    "spec": {
        "metric": "ROC",
        "objective": "maximize",
    },
}

parameters = open("parameters.yml")
yamlparameters = yaml.load(parameters, Loader=yaml.FullLoader)
opt = Optimizer(config,
                api_key=yamlparameters["comet_api_key"],
                project_name="NNqhmv6",
                auto_metric_logging=True)

X_train, X_test, y_train, y_test = get_features(yamlparameters["DataDir"])

for experiment in opt.get_experiments():
    keras_model = models.qdense_model(
        Input(shape=X_train.shape[1:]),
        l1Reg=experiment.get_parameter("Regularization"),
        bits=14,
        ints=2)
    #keras_model = models.dense_model(Input(shape=X_train.shape[1:]), l1Reg=experiment.get_parameter("Regularization"))
    startlearningrate = experiment.get_parameter("learning_rate")
    adam = Adam(lr=startlearningrate,
                beta_1=experiment.get_parameter("learning_beta1"),
                beta_2=experiment.get_parameter("learning_beta2"),
                amsgrad=experiment.get_parameter("Adagrad"))
    keras_model.compile(optimizer=adam,
                        loss='binary_crossentropy',
                        metrics=['binary_accuracy'])
Exemple #6
0
    drug_feature_type=DrugFeatureType.GRAPH,
    drug_nan_processing=NanProcessing.NONE,
    drug_scaling_method=ScalingMethod.NONE,
    drug_featurizer_kwargs=None,

    # Random split
    disjoint_cells=False,
    disjoint_drugs=False,
    summary=True)

node_attr_dim = trn_dset[0].x.shape[1]
edge_attr_dim = trn_dset[0].edge_attr.shape[1]
cell_input_dim = trn_dset[0].cell_data.shape[0]

# Iterate through all different experiment configurations
for experiment in comet_opt.get_experiments():

    # Disable auto-collection of any metrics
    experiment.disable_mp()

    graph_model = experiment.get_parameter(name='graph_model')
    graph_state_dim = experiment.get_parameter(name='graph_state_dim')
    graph_num_conv = experiment.get_parameter(name='graph_num_conv')
    graph_out_dim = experiment.get_parameter(name='graph_out_dim')
    graph_attention_pooling = \
        (experiment.get_parameter(name='graph_attention_pooling') == 'True')
    uno_dropout = experiment.get_parameter(name='uno_dropout')

    uno_state_dim = experiment.get_parameter(name='uno_state_dim')
    cell_state_dim = experiment.get_parameter(name='cell_state_dim')
Exemple #7
0
        self.fc1 = nn.Linear(4 * 4 * 50, 500)
        self.fc2 = nn.Linear(500, 10)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        x = F.max_pool2d(x, 2, 2)
        x = F.relu(self.conv2(x))
        x = F.max_pool2d(x, 2, 2)
        x = x.view(-1, 4 * 4 * 50)
        x = F.relu(self.fc1(x))
        x = self.fc2(x)
        return F.log_softmax(x, dim=1)


# experiment = Experiment(project_name="pytorch")
for experiment in optimizer.get_experiments():

    # MNIST Dataset
    train_dataset = dsets.MNIST(root='./data/',
                                train=True,
                                transform=transforms.ToTensor(),
                                download=True)

    test_dataset = dsets.MNIST(root='./data/',
                               train=False,
                               transform=transforms.ToTensor())

    # Data Loader (Input Pipeline)
    train_loader = torch.utils.data.DataLoader(
        dataset=train_dataset,
        batch_size=experiment.get_parameter('batch_size'),
Exemple #8
0
    def optimise(self):
        config = {
            # We pick the Bayes algorithm:
            "algorithm": "bayes",

            # Declare your hyperparameters in the Vizier-inspired format:
            "parameters": {
                "n_estimators": {
                    "type": "integer",
                    "min": self.n_estimators["min"],
                    "max": self.n_estimators["max"],
                    "scalingType": "uniform"
                },
                "max_depth": {
                    "type": "integer",
                    "min": self.max_depth["min"],
                    "max": self.max_depth["max"],
                    "scalingType": "uniform"
                },
                "learning_rate": {
                    "type": "float",
                    "min": self.learning_rate["min"],
                    "max": self.learning_rate["max"],
                    "scalingType": "uniform"
                },
                "gamma": {
                    "type": "float",
                    "min": self.gamma["min"],
                    "max": self.gamma["max"],
                    "scalingType": "uniform"
                },
                "subsample": {
                    "type": "float",
                    "min": self.subsample["min"],
                    "max": self.subsample["max"],
                    "scalingType": "uniform"
                },
                "min_child_weight": {
                    "type": "float",
                    "min": self.min_child_weight["min"],
                    "max": self.min_child_weight["max"],
                    "scalingType": "uniform"
                },
                "reg_alpha": {
                    "type": "float",
                    "min": self.alpha["min"],
                    "max": self.alpha["max"],
                    "scalingType": "uniform"
                },
            },

            # Declare what we will be optimizing, and how:
            "spec": {
                "metric": "ROC",
                "objective": "maximize",
            },
        }
        opt = Optimizer(config,
                        api_key=self.comet_api_key,
                        project_name=self.comet_project_name,
                        auto_metric_logging=True)

        for experiment in opt.get_experiments():
            self.model.learning_rate = experiment.get_parameter(
                "learning_rate")
            self.model.n_estimators = experiment.get_parameter("n_estimators")
            self.model.subsample = experiment.get_parameter("subsample")
            self.model.max_depth = experiment.get_parameter("max_depth")
            self.model.gamma = experiment.get_parameter("gamma")
            self.model.reg_alpha = experiment.get_parameter("reg_alpha")
            self.model.min_child_weight = experiment.get_parameter(
                "min_child_weight")

            self.train()
            self.test()
            auc, binary_accuracy = self.evaluate()

            experiment.log_metric("ROC", auc)
            experiment.log_metric("Binary_Accuracy", binary_accuracy)
Exemple #9
0
    def optimise(self):
        config = {
            # We pick the Bayes algorithm:
            "algorithm": "bayes",

            # Declare your hyperparameters in the Vizier-inspired format:
            "parameters": {
                "max_depth": {
                    "type": "integer",
                    "min": self.max_depth["min"],
                    "max": self.max_depth["max"],
                    "scalingType": "uniform"
                },
                "learning_rate": {
                    "type": "float",
                    "min": self.learning_rate["min"],
                    "max": self.learning_rate["max"],
                    "scalingType": "uniform"
                },
                "gamma": {
                    "type": "float",
                    "min": self.gamma["min"],
                    "max": self.gamma["max"],
                    "scalingType": "uniform"
                },
                "subsample": {
                    "type": "float",
                    "min": self.subsample["min"],
                    "max": self.subsample["max"],
                    "scalingType": "uniform"
                },
                "min_child_weight": {
                    "type": "float",
                    "min": self.min_child_weight["min"],
                    "max": self.min_child_weight["max"],
                    "scalingType": "uniform"
                },
                "reg_alpha": {
                    "type": "float",
                    "min": self.alpha["min"],
                    "max": self.alpha["max"],
                    "scalingType": "uniform"
                },
                "early_stopping": {
                    "type": "integer",
                    "min": self.early_stopping["min"],
                    "max": self.early_stopping["max"],
                    "scalingType": "uniform"
                },
                "rate_drop": {
                    "type": "float",
                    "min": self.rate_drop["min"],
                    "max": self.rate_drop["max"],
                    "scalingType": "uniform"
                },
                "skip_drop": {
                    "type": "float",
                    "min": self.skip_drop["min"],
                    "max": self.skip_drop["max"],
                    "scalingType": "uniform"
                }
            },

            # Declare what we will be optimizing, and how:
            "spec": {
                "metric": "ROC",
                "objective": "maximize",
            },
        }
        opt = Optimizer(config,
                        api_key=self.comet_api_key,
                        project_name=self.comet_project_name,
                        auto_metric_logging=True)

        for experiment in opt.get_experiments():
            self.param["learning_rate"] = experiment.get_parameter(
                "learning_rate")
            self.num_rounds = self.n_estimators
            self.param["subsample"] = experiment.get_parameter("subsample")
            self.param["max_depth"] = experiment.get_parameter("max_depth")
            self.param["gamma"] = experiment.get_parameter("gamma")
            self.param["reg_alpha"] = experiment.get_parameter("reg_alpha")
            self.param["min_child_weight"] = experiment.get_parameter(
                "min_child_weight")
            self.param["rate_drop"] = experiment.get_parameter("rate_drop")
            self.param["skip_drop"] = experiment.get_parameter("skip_drop")
            self.early_stopping_rounds = experiment.get_parameter(
                "early_stopping")

            self.train()
            self.test()
            auc, binary_accuracy = self.evaluate()

            experiment.log_metric("ROC", auc)
            experiment.log_metric("Binary_Accuracy", binary_accuracy)
            experiment.log_metric("Best Boost Round", self.boost_rounds)
            experiment.log_metric("score", (auc / 0.5 - 1) +
                                  (1 - self.boost_rounds / self.n_estimators))
def main(alpha=0.5):
    scaler, yscaler, X_train, X_test, y_train, y_test = process_data()

    config = {
        # We pick the Bayes algorithm:
        'algorithm': 'bayes',
        'name': 'fine tune LightGBM',
        # Declare your hyperparameters in the Vizier-inspired format:
        'parameters': {
            'n_estimators': {
                'type': 'integer',
                'min': 50,
                'max': 5000
            },
            'max_depth': {
                'type': 'integer',
                'min': 10,
                'max': 50
            },
            'num_leaves': {
                'type': 'integer',
                'min': 100,
                'max': 500
            },
            'reg_alpha': {
                'type': 'float',
                'min': 0.00001,
                'max': 0.2,
                'scalingType': 'loguniform',
            },
            'reg_lambda': {
                'type': 'float',
                'min': 0.00001,
                'max': 0.2,
                'scalingType': 'loguniform',
            },
            'subsample': {
                'type': 'float',
                'min': 0.2,
                'max': 1.0
            },
            'colsample_bytree': {
                'type': 'float',
                'min': 0.2,
                'max': 1.0
            },
            'min_child_weight': {
                'type': 'float',
                'min': 0.001,
                'max': 0.1,
                'scalingType': 'loguniform',
            },
        },
        # Declare what we will be optimizing, and how:
        'spec': {
            'metric': 'loss',
            'objective': 'minimize'
        },
    }

    # Next, create an optimizer, passing in the config:
    # (You can leave out API_KEY if you already set it)
    opt = Optimizer(config,
                    api_key=os.environ['COMET_API_KEY'],
                    project_name='color-ml')

    for _, experiment in enumerate(opt.get_experiments()):
        experiment.log_parameter('colorspace', 'rgb')
        params = {
            'n_estimators': experiment.get_parameter('n_estimators'),
            'colsample_bytree': experiment.get_parameter('colsample_bytree'),
            'num_leaves': experiment.get_parameter('num_leaves'),
            'max_depth': experiment.get_parameter('max_depth'),
            'reg_alpha': experiment.get_parameter('reg_alpha'),
            'reg_lambda': experiment.get_parameter('reg_lambda'),
            'subsample': experiment.get_parameter('subsample'),
            'min_child_weight': experiment.get_parameter('min_child_weight'),
        }
        loss, std = fit(experiment, X_train, y_train, params, alpha)
        experiment.log_metric('loss', loss)
        experiment.log_metric('std', std)
Exemple #11
0
    def train(self):
        if (self.config.model.name == "encoder"):
            import keras
        else:
            import tensorflow.keras as keras
        start_time = time.time()

        ## bayes optimization, refer to https://www.comet.ml/docs/python-sdk/introduction-optimizer/
        config = {
            "algorithm": "bayes",
            "parameters": {
                "batch": {
                    "type": "integer",
                    "min": 8,
                    "max": 10
                }
            },
            "spec": {
                "metric": "val_loss",
                "objective": "minimize"
            },
        }
        opt = Optimizer(config,
                        api_key=self.config.comet_api_key,
                        project_name=self.config.exp_name)
        for exp in opt.get_experiments():
            history = self.model.fit(
                self.data[0],
                self.data[1],
                epochs=self.config.trainer.num_epochs,
                verbose=self.config.trainer.verbose_training,
                batch_size=exp.get_parameter('batch'),
                validation_split=self.config.trainer.validation_split,
                callbacks=self.callbacks,
            )
            val_loss = min(history.history['val_loss'])
            print(val_loss)
            exp.log_metric("val_loss", val_loss)
        # history = self.model.fit(
        #     self.data[0], self.data[1],
        #     epochs=self.config.trainer.num_epochs,
        #     verbose=self.config.trainer.verbose_training,
        #     batch_size=self.config.trainer.batch_size,
        #     validation_split=self.config.trainer.validation_split,
        #     callbacks=self.callbacks,
        # )
        self.duration = time.time() - start_time
        self.history = history
        # if(self.config.model.name == "encoder"):
        #
        #     self.best_model = keras.models.load_model(os.path.join(self.config.callbacks.checkpoint_dir,'best_model-%s.hdf5'%self.config.callbacks.checkpoint_monitor),
        #                     custom_objects={'precision': precision, 'recall': recall,'f1': f1,
        #                                     'InstanceNormalization': keras_contrib.layers.InstanceNormalization()})
        # else:
        self.best_model = keras.models.load_model(os.path.join(
            self.config.callbacks.checkpoint_dir,
            'best_model-%s.hdf5' % self.config.callbacks.checkpoint_monitor),
                                                  custom_objects={
                                                      'precision': precision,
                                                      'recall': recall,
                                                      'f1': f1
                                                  })
        self.loss.extend(history.history['loss'])
        self.acc.extend(history.history['accuracy'])
        self.val_loss.extend(history.history['val_loss'])
        self.val_acc.extend(history.history['val_accuracy'])
        self.precision.extend(history.history['precision'])
        self.recall.extend(history.history['recall'])
        self.f1.extend(history.history['f1'])
        self.val_precision.extend(history.history['val_precision'])
        self.val_recall.extend(history.history['val_recall'])
        self.val_f1.extend(history.history['val_f1'])

        best_model = save_training_logs(self.config.log_dir, history)
        self.best_model_train_loss = best_model.loc[0, 'best_model_train_loss']
        self.best_model_val_loss = best_model.loc[0, 'best_model_val_loss']
        self.best_model_train_acc = best_model.loc[0, 'best_model_train_acc']
        self.best_model_val_acc = best_model.loc[0, 'best_model_val_acc']
        self.best_model_train_precision = best_model.loc[
            0, 'best_model_train_precision']
        self.best_model_val_precision = best_model.loc[
            0, 'best_model_val_precision']
        self.best_model_train_recall = best_model.loc[
            0, 'best_model_train_recall']
        self.best_model_val_recall = best_model.loc[0, 'best_model_val_recall']
        self.best_model_train_f1 = best_model.loc[0, 'best_model_train_f1']
        self.best_model_val_f1 = best_model.loc[0, 'best_model_val_f1']
        self.best_model_learning_rate = best_model.loc[
            0, 'best_model_learning_rate']
        self.best_model_nb_epoch = best_model.loc[0, 'best_model_nb_epoch']
Exemple #12
0

if __name__ == '__main__':

    repo = Repo("./")
    assert not repo.bare

    project_name = "candidate-tests"

    if len(sys.argv) > 1:
        # get the config file from the arguments
        print("-> Loading the optimizer...")
        opt = CometOptimizer(config=sys.argv[1])

        active_parallel_experiements = []
        for experiment in opt.get_experiments(project_name=project_name,
                                              workspace="olibd"):
            print("-> Registering experiment {} with Comet...".format(
                experiment.get_key()))
            active_parallel_experiements.append(experiment)

            if len(active_parallel_experiements) == torch.cuda.device_count(
            ) or (not cuda_is_available()
                  and len(active_parallel_experiements) == 1):
                launch_experiment(active_parallel_experiements, repo)
                active_parallel_experiements = []

        # If the last batch of experiments had a lower experiment count
        # than the number of GPUs, then it hasn't run yet. So we need to
        # run them now.
        if len(active_parallel_experiements) > 0:
            launch_experiment(active_parallel_experiements, repo)
def main():

    experiment = Experiment(api_key="API_KEY",
                            project_name="PROJECT",
                            workspace="WORKSPACE")

    raw_df = pd.read_csv(f'{DATA}Tweets.csv')

    df = raw_df[['tweet_id', 'text', 'airline_sentiment']]

    # Preprocess text and put it in a new column
    preprocessor = PreProcessor(df, 'text')
    df['cleaned_text'] = preprocessor.full_preprocess()

    # Shuffling so we can get random tweets for the test set
    df = shuffle(df, random_state=seed)
    # Keep 1000 samples of the data as test set
    test_set = df[:1000]

    # Get training and validation data
    X_train, X_val, y_train, y_val = train_test_split(
        df['cleaned_text'][1000:],
        df['airline_sentiment'][1000:],
        test_size=0.2,
        random_state=seed)

    # Get sentiment labels for test set
    y_test = test_set['airline_sentiment']

    # Create matrix based on word frequency in tweets
    vectorizer = TfidfVectorizer()
    X_train = vectorizer.fit_transform(X_train)
    X_val = vectorizer.transform(X_val)
    X_test = vectorizer.transform(test_set['cleaned_text'])

    # Onehot encoding of target variable
    # Negative = [1,0,0], Neutral = [0,1,0], Positive = [0,0,1]

    # Initialize sklearn's one-hot encoder class
    onehot_encoder = OneHotEncoder(sparse=False)

    # One hot encoding for training set
    integer_encoded_train = np.array(y_train).reshape(len(y_train), 1)
    onehot_encoded_train = onehot_encoder.fit_transform(integer_encoded_train)

    # One hot encoding for validation set
    integer_encoded_val = np.array(y_val).reshape(len(y_val), 1)
    onehot_encoded_val = onehot_encoder.fit_transform(integer_encoded_val)

    # One hot for test_set
    integer_encoded_test = np.array(y_test).reshape(len(y_test), 1)
    onehot_encoded_test = onehot_encoder.fit_transform(integer_encoded_test)

    from comet_ml import Optimizer

    config = {
        "algorithm": "bayes",
        "parameters": {
            "batch_size": {
                "type": "integer",
                "min": 16,
                "max": 128
            },
            "dropout": {
                "type": "float",
                "min": 0.1,
                "max": 0.5
            },
            "lr": {
                "type": "float",
                "min": 0.0001,
                "max": 0.001
            },
            "beta1": {
                "type": "float",
                "min": 0.95,
                "max": 0.999
            },
            "beta2": {
                "type": "float",
                "min": 0.95,
                "max": 0.999
            },
            "epsilon": {
                "type": "float",
                "min": 1e-9,
                "max": 1e-7
            },
            "patience": {
                "type": "integer",
                "min": 3,
                "max": 7
            }
        },
        "spec": {
            "metric": "loss",
            "objective": "minimize",
        },
    }

    opt = Optimizer(config,
                    api_key="ERPBfa6mmwJzQnk61oiqLOCie",
                    project_name="nlp-airline",
                    workspace="demo")

    for experiment in opt.get_experiments():
        experiment.add_tag('LR-Optimizer')
        # Neural network architecture
        initializer = keras.initializers.he_normal(seed=seed)
        activation = keras.activations.elu
        optimizer = keras.optimizers.Adam(
            lr=experiment.get_parameter("lr"),
            beta_1=experiment.get_parameter("beta1"),
            beta_2=experiment.get_parameter("beta2"),
            epsilon=experiment.get_parameter('epsilon'))
        es = EarlyStopping(monitor='val_acc',
                           mode='max',
                           verbose=1,
                           patience=4)

        batch_size = experiment.get_parameter("batch_size")
        # Build model architecture
        model = Sequential()
        model.add(
            Dense(20,
                  activation=activation,
                  kernel_initializer=initializer,
                  input_dim=X_train.shape[1]))
        model.add(Dropout(experiment.get_parameter("dropout")))
        model.add(
            Dense(3, activation='softmax', kernel_initializer=initializer))
        model.compile(optimizer=optimizer,
                      loss='binary_crossentropy',
                      metrics=['accuracy'])
        # Fit the model using the batch_generator
        hist = model.fit_generator(
            generator=batch_generator(X_train,
                                      onehot_encoded_train,
                                      batch_size=batch_size,
                                      shuffle=True),
            epochs=5,
            validation_data=(X_val, onehot_encoded_val),
            steps_per_epoch=X_train.shape[0] / batch_size,
            callbacks=[es])
        score = model.evaluate(X_test, onehot_encoded_test, verbose=0)
        logging.info("Score %s", score)
from comet_ml import Optimizer
import sys
import os

import train
import evaluate

params_file = "config/parameters.json"

opt = Optimizer(sys.argv[1], trials=1, api_key="jBFVYFo9VUsy0kb0lioKXfTmM")

for experiment in opt.get_experiments(project_name="fastdepth"):
    params = train.get_params(params_file)

    #    try:
    #       pid =  os.environ["COMET_OPTIMIZER_PROCESS_ID"]
    #      params["device"] = pid
    # except KeyError:
    #    pass

    params["batch_size"] = experiment.get_parameter("batch_size")
    params["optimizer"]["lr"] = experiment.get_parameter("learning_rate")
    params["optimizer"]["momentum"] = experiment.get_parameter("momentum")
    params["optimizer"]["weight_decay"] = experiment.get_parameter(
        "weight_decay")

    print("Batch Size: ", params["batch_size"])
    print("Learning Rate: ", params["optimizer"]["lr"])
    print("Momentum: ", params["optimizer"]["momentum"])
    print("Weight Decay: ", params["optimizer"]["weight_decay"])
    print("Device: ", params["device"])
def main():

    os.environ['CUDA_VISIBLE_DEVICES'] = '2'

    # capture the config path from the run arguments
    # then process the json configuration file
    # try:
    args = get_args()
    config, _ = get_config_from_json(args.config)

    bayes_config = {
        "algorithm": "bayes",
        "parameters": {
            # "model": {"type": "categorical", "values": ['cnn','mlp']},
            "learning_rate": {
                "type": "float",
                "min": 0.001,
                "max": 0.01
            },
            # "batch_size": {"type": "integer", "min": 16, "max": 32},
            # "num_epochs": {"type": "integer", "min": 5, "max": 10},
        },
        "spec": {
            "maxCombo": 10,
            "objective": "minimize",
            "metric": "test_f1",
            "minSampleSize": 100,
            "retryAssignLimit": 0,
        },
        "trials": 1,
        "name": "Bayes",
    }
    opt = Optimizer(bayes_config,
                    api_key=config.comet_api_key,
                    project_name=config.exp_name)
    for exp in opt.get_experiments():
        args = get_args()
        # config = process_config_UtsClassification_bayes_optimization(args.config, exp.get_parameter('model'),exp.get_parameter('learning_rate'),
        #                                                              exp.get_parameter('batch_size'), exp.get_parameter('num_epochs'))
        config = process_config_UtsClassification_bayes_optimization(
            args.config, exp.get_parameter('learning_rate'))
        # except:
        #     print("missing or invalid arguments")
        #     exit(0)

        # create the experiments dirs

        print('Create the data generator.')
        data_loader = UtsClassificationDataLoader(config)

        print('Create the model.')

        model = UtsClassificationModel(config, data_loader.get_inputshape(),
                                       data_loader.get_nbclasses())

        print('Create the trainer')
        trainer = UtsClassificationTrainer(model.model,
                                           data_loader.get_train_data(),
                                           config)

        print('Start training the model.')
        trainer.train()

        # print('Create the evaluater.')
        # evaluater = UtsClassificationEvaluater(trainer.best_model, data_loader.get_test_data(), data_loader.get_nbclasses(),
        #                                        config)
        #
        # print('Start evaluating the model.')
        # evaluater.evluate()

        exp.log_metric("test_f1", trainer.best_model_val_loss)

        print('done')
Exemple #16
0
def main():
    """ Main tracking script """
    args = parse_args()
    print(args)
    from comet_ml import Optimizer

    # We only need to specify the algorithm and hyperparameters to use:
    config = {
        # We pick the Bayes algorithm:
        "algorithm": "bayes",

        # Declare your hyperparameters in the Vizier-inspired format:
        "parameters": {
            "alpha": {
                "type": "float",
                "min": 0.01,
                "max": 0.3
            },
            "lr": {
                "type": "float",
                "min": 5e-5,
                "max": 5e-2
            },
            "gamma": {
                "type": "float",
                "min": 0.75,
                "max": 0.99
            },
        },

        # Declare what we will be optimizing, and how:
        "spec": {
            "metric": "VC",
            "objective": "maximize",
            "seed": args.rng_seed,
        },
    }

    # Next, create an optimizer, passing in the config:
    opt = Optimizer(config, project_name=args.experiment)

    for experiment in opt.get_experiments():
        experiment.auto_metric_logging = False
        experiment.workspace = 'TrackToLearn'
        experiment.parse_args = False
        experiment.disabled = not args.use_comet

        gamma = experiment.get_parameter("gamma")
        alpha = experiment.get_parameter("alpha")
        lr = experiment.get_parameter("lr")

        td3_experiment = SACTrackToLearnTraining(
            # Dataset params
            args.path,
            args.experiment,
            args.name,
            args.dataset_file,
            args.subject_id,
            args.test_dataset_file,
            args.test_subject_id,
            args.reference_file,
            args.ground_truth_folder,
            # RL params
            args.max_ep,
            args.log_interval,
            args.action_std,
            args.valid_noise,
            lr,
            gamma,
            alpha,
            # TD3 params
            args.training_batch_size,
            # Env params
            args.n_seeds_per_voxel,
            args.max_angle,
            args.min_length,
            args.max_length,
            args.step_size,  # Step size (in mm)
            args.tracking_batch_size,
            args.n_signal,
            args.n_dirs,
            # Model params
            args.n_latent_var,
            args.hidden_layers,
            args.add_neighborhood,
            # Experiment params
            args.use_gpu,
            args.rng_seed,
            experiment,
            args.render,
            args.run_tractometer,
            args.load_teacher,
            args.load_policy,
        )
        td3_experiment.run()
Exemple #17
0
# Initialize the dataset and embedding processor
data_set = data_processor.DataProcessor(task_name, dataset_dir, max_seq_length, vocab_size=vocab_size, to_tokens=to_tokens)
embedding = embedding_processor.get_embedding(embedding_type)

# If dataset folder is empty get the metadata and datasets
if not os.listdir(dataset_dir):
    data_set.get_dataset()

# Load the metadata
vocabulary, labels = data_set.load_metadata()

# Generate the embedding matrix
embedding_matrix = embedding.get_embedding_matrix(embeddings_dir, embedding_source, embedding_dim, vocabulary)

# Loop over each experiment in the optimiser
for experiment in model_optimiser.get_experiments(project_name=experiment_params['project_name'], workspace="nathanduran", auto_output_logging='simple'):

    # Set up comet experiment
    experiment.set_name(experiment_name)

    # Get model params from optimiser experiment
    model_params = {}
    for key in optimiser_config['parameters'].keys():
        model_params[key] = experiment.get_parameter(key)

    # Log parameters
    experiment.log_parameters(model_params)
    for key, value in experiment_params.items():
        experiment.log_other(key, value)

    # Build tensorflow datasets from .npz files
    def score_bayes_trainer_harness(self):
        """
      Returns
      -------
      :return: ``None``
          None, but results in saved models suitable for scoring and trained
          on all available data.
      """

        self.__log.info("Starting generic score train loop")
        train_data = self.train_data
        val_data = self.val_data
        models = self.model
        out_path = self.out_path
        type_time_series = self.type_time_series
        param_search = self.param_search
        trainer = self.trainer
        api_key = self.api_key
        rest_api_key = self.rest_api_key
        workspace = self.workspace

        for models_ in models.get(type_time_series):

            for key, value in models_.items():

                model_name = key
                model = value[0]
                model_kwarg = value[1]

                if param_search == 'bayes':

                    search_space = GluonTSBayesEstimatorKwargs.BayesModelLookup.get(
                        model_name)

                    # comet-ml hyperparameter optimization configuration (bayes in this case)
                    config = {
                        "algorithm": "bayes",
                        "spec": {
                            "maxCombo": 5,  # no of combinations to try
                            "objective": "minimize",
                            "metric": "loss",
                            "seed": 42,
                            "gridSize": 10,
                            "minSampleSize": 100,
                            "retryLimit": 20,
                            "retryAssignLimit": 0,
                        },
                        "name": "My Bayesian Search",
                        "trials": 1,
                    }

                    config['parameters'] = search_space

                    # current time
                    timestr = time.strftime("%Y%m%d-%H%M%S")
                    # comet-ml project name for the optimization
                    project_name = f"optimizer-{model_name}-{timestr}"
                    # initialize the comet-ml optimizer
                    optimizer = Optimizer(config=config,
                                          api_key=api_key,
                                          project_name=project_name)
                    # loop through the parameter combinations that the bayes optimizer suggests
                    for experiment in optimizer.get_experiments():

                        # explicitly set the model parameters (should be generic for any model)
                        if model_name == "SimpleFeedForward":

                            hidden1 = experiment.get_parameter(
                                "hidden_layer_size")
                            hidden2 = experiment.get_parameter(
                                "hidden2_layer_size")
                            model_kwarg['num_hidden_dimensions'] = [
                                hidden1, hidden2
                            ]

                            self.__log.info(
                                f"model_kwarg['num_hidden_dimensions'] : {model_kwarg['num_hidden_dimensions']}"
                            )

                        elif model_name == "DeepAREstimate":

                            model_kwarg[
                                'num_layers'] = experiment.get_parameter(
                                    "num_layers")
                            model_kwarg[
                                'num_cells'] = experiment.get_parameter(
                                    "num_cells")
                            model_kwarg[
                                'cell_type'] = experiment.get_parameter(
                                    "cell_type")
                            model_kwarg[
                                'dropout_rate'] = experiment.get_parameter(
                                    "dropout_rate")

                        # set trainer params
                        trainer.learning_rate = experiment.get_parameter(
                            "learning_rate")
                        trainer.batch_size = experiment.get_parameter(
                            "batch_size")
                        trainer.epochs = 2

                        # initialize model from the suggested hyperparameters
                        model = model.from_hyperparameters(**model_kwarg)
                        # set the trainer
                        model.trainer = trainer

                        self.__log.info(
                            f'\n model.trainer.lr : {model.trainer.learning_rate}'
                        )
                        self.__log.info(
                            f'model.trainer.epochs : {model.trainer.epochs}\n')

                        # train the model
                        predictor = model.train(train_data)
                        # make predictions
                        forecast_it, ts_it = make_evaluation_predictions(
                            dataset=val_data,  # test dataset
                            predictor=predictor,  # predictor
                            num_eval_samples=
                            1,  # number of sample paths we want for evaluation
                        )

                        # convert gluonts objects to lists
                        forecasts = list(forecast_it)
                        tss = list(ts_it)

                        # get prediction length
                        prediction_length = forecasts[0].mean.shape[0]

                        y_test_ = list(val_data)[0]['target']
                        y_preds_ = forecasts[0].mean
                        y_test_ = y_test_[-prediction_length:]

                        mae_ = mean_absolute_error(y_test_, y_preds_)

                        # Report the loss to comet
                        experiment.log_metric("loss", mae_)

                experiment.end()

            # initialize comet REST API to retrieve the best hyperparameters
            comet_api = comet_ml.API(rest_api_key=rest_api_key)

            project = comet_api.get(workspace=workspace,
                                    project_name=optimizer.
                                    experiment_kwargs['project_name'].lower())

            # get the experiment ids
            exp_ids = [x.id for x in project]

            scores_df = pd.DataFrame(index=exp_ids, columns=['metric'])
            # loop through the experiments within the comet project
            for exp_id in exp_ids:

                exp = comet_api.get(
                    f"{workspace}/{project_name.lower()}/{exp_id}")

                scores_df.at[exp_id,
                             'metric'] = exp.get_metrics()[0]['metricValue']

            scores_df.metric = scores_df.metric.map(float)
            # get experiment_id of the best score
            best_exp_id = scores_df.metric.idxmin()
            # get the best experiment
            exp = comet_api.get(
                f"{workspace}/{project_name.lower()}/{best_exp_id}")
            # get the best hyperparameters
            best_params = {
                x['name']: x['valueCurrent']
                for x in exp.get_parameters_summary() if x['name'] != 'f'
            }
            # save best params in model_name-keyed dictionary for later use
            self.best_params[model_name] = best_params