def test_client(): init_communicate(Config.client_rank, master_address=master_address, master_port=master_port) warming_up_cuda() traffic_record = TrafficRecord() prot = Avgpool2x2Client(num_elem, q_23, q_16, work_bit, data_bit, img_hw, fhe_builder_16, fhe_builder_23, "avgpool") with NamedTimerInstance("Client Offline"): prot.offline() torch_sync() traffic_record.reset("client-offline") with NamedTimerInstance("Client Online"): prot.online(img_c) torch_sync() traffic_record.reset("client-online") blob_out_c = BlobTorch(num_elem // 4, torch.float, prot.comm_base, "recon_res_c") torch_sync() blob_out_c.send(prot.out_c) end_communicate()
def test_client(): rank = Config.client_rank init_communicate(rank, master_address=master_address, master_port=master_port) warming_up_cuda() prot = Conv2dSecureClient(modulus, fhe_builder, data_range, img_hw, filter_hw, num_input_channel, num_output_channel, "test_conv2d_secure_comm", padding=padding) with NamedTimerInstance("Client Offline"): prot.offline(input_c) torch_sync() with NamedTimerInstance("Client Online"): prot.online() torch_sync() blob_output_c = BlobTorch(prot.output_shape, torch.float, prot.comm_base, "output_c") torch_sync() blob_output_c.send(prot.output_c) end_communicate()
def test_client(): init_communicate(Config.client_rank) prot = FcFheClient(modulus, data_range, num_input_unit, num_output_unit, fhe_builder, test_name) with NamedTimerInstance("Client Offline"): prot.offline(input_mask) torch_sync() blob_output_c = BlobTorch(prot.output_shape, torch.float, prot.comm_base, "output_c") torch_sync() blob_output_c.send(prot.output_c) end_communicate()
def test_server(): rank = Config.server_rank init_communicate(rank, master_address=master_address, master_port=master_port) traffic_record = TrafficRecord() fhe_builder_16 = FheBuilder(q_16, Config.n_16) fhe_builder_23 = FheBuilder(q_23, Config.n_23) comm_fhe_16 = CommFheBuilder(rank, fhe_builder_16, "fhe_builder_16") comm_fhe_23 = CommFheBuilder(rank, fhe_builder_23, "fhe_builder_23") torch_sync() comm_fhe_16.recv_public_key() comm_fhe_23.recv_public_key() comm_fhe_16.wait_and_build_public_key() comm_fhe_23.wait_and_build_public_key() img = gen_unirand_int_grain(-data_range // 2 + 1, data_range // 2, num_elem) img_s = gen_unirand_int_grain(0, q_23 - 1, num_elem) img_c = pmod(img - img_s, q_23) prot = Maxpool2x2DgkServer(num_elem, q_23, q_16, work_bit, data_bit, img_hw, fhe_builder_16, fhe_builder_23, "max_dgk") blob_img_c = BlobTorch(num_elem, torch.float, prot.comm_base, "recon_max_c") torch_sync() blob_img_c.send(img_c) torch_sync() with NamedTimerInstance("Server Offline"): prot.offline() torch_sync() traffic_record.reset("server-offline") with NamedTimerInstance("Server Online"): prot.online(img_s) torch_sync() traffic_record.reset("server-online") blob_max_c = BlobTorch(num_elem // 4, torch.float, prot.comm_base, "recon_max_c") blob_max_c.prepare_recv() torch_sync() max_c = blob_max_c.get_recv() check_correctness_online(img, prot.max_s, max_c) end_communicate()
def test_client(): init_communicate(Config.client_rank) prot = SharesMultClient(num_elem, modulus, fhe_builder, "test_shares_mult") with NamedTimerInstance("Client Offline"): prot.offline() torch_sync() with NamedTimerInstance("Client Online"): prot.online(a_c, b_c) torch_sync() blob_u_c = BlobTorch(num_elem, torch.float, prot.comm_base, "recon_u_c") blob_v_c = BlobTorch(num_elem, torch.float, prot.comm_base, "recon_v_c") blob_z_c = BlobTorch(num_elem, torch.float, prot.comm_base, "recon_z_c") torch_sync() blob_u_c.send(prot.u_c) blob_v_c.send(prot.v_c) blob_z_c.send(prot.z_c) blob_c_c = BlobTorch(num_elem, torch.float, prot.comm_base, "c_c") torch_sync() blob_c_c.send(prot.c_c) end_communicate()
def test_client(): init_communicate(Config.client_rank) warming_up_cuda() prot = SwapToClientOfflineClient(num_elem, modulus, test_name) with NamedTimerInstance("Client Offline"): prot.offline(y_c) torch_sync() with NamedTimerInstance("Client Online"): prot.online(x_c) torch_sync() blob_output_c = BlobTorch(num_elem, torch.float, prot.comm_base, "output_c") torch_sync() blob_output_c.send(prot.output_c) end_communicate()
def reconstructed_to_server(self, comm_base: CommBase, modulus): blob_output_share = BlobTorch(self.get_output_shape(), torch.float, comm_base, self.name + "_output_share") if self.is_server(): blob_output_share.prepare_recv() torch_sync() other_output_share = blob_output_share.get_recv() # print(self.name + "_output_share" + "_server: have", self.get_output_share()) # print(self.name + "_output_share" + "_server: received", other_output_share) self.reconstructed_output = nmod( self.get_output_share() + other_output_share, modulus) # print(self.name + "_output_share" + "_server: recon", self.reconstructed_output) if self.is_client(): torch_sync() blob_output_share.send(self.get_output_share())
def test_client(): rank = Config.client_rank init_communicate(rank, master_address=master_address, master_port=master_port) traffic_record = TrafficRecord() fhe_builder_16 = FheBuilder(q_16, Config.n_16) fhe_builder_23 = FheBuilder(q_23, Config.n_23) fhe_builder_16.generate_keys() fhe_builder_23.generate_keys() comm_fhe_16 = CommFheBuilder(rank, fhe_builder_16, "fhe_builder_16") comm_fhe_23 = CommFheBuilder(rank, fhe_builder_23, "fhe_builder_23") torch_sync() comm_fhe_16.send_public_key() comm_fhe_23.send_public_key() prot = Maxpool2x2DgkClient(num_elem, q_23, q_16, work_bit, data_bit, img_hw, fhe_builder_16, fhe_builder_23, "max_dgk") blob_img_c = BlobTorch(num_elem, torch.float, prot.comm_base, "recon_max_c") blob_img_c.prepare_recv() torch_sync() img_c = blob_img_c.get_recv() torch_sync() with NamedTimerInstance("Client Offline"): prot.offline() torch_sync() traffic_record.reset("client-offline") with NamedTimerInstance("Client Online"): prot.online(img_c) torch_sync() traffic_record.reset("client-online") blob_max_c = BlobTorch(num_elem // 4, torch.float, prot.comm_base, "recon_max_c") torch_sync() blob_max_c.send(prot.max_c) end_communicate()
def test_client(): rank = Config.client_rank init_communicate(rank, master_address=master_address, master_port=master_port) traffic_record = TrafficRecord() fhe_builder_16 = FheBuilder(q_16, Config.n_16) fhe_builder_23 = FheBuilder(q_23, Config.n_23) fhe_builder_16.generate_keys() fhe_builder_23.generate_keys() comm_fhe_16 = CommFheBuilder(rank, fhe_builder_16, "fhe_builder_16") comm_fhe_23 = CommFheBuilder(rank, fhe_builder_23, "fhe_builder_23") torch_sync() comm_fhe_16.send_public_key() comm_fhe_23.send_public_key() a = gen_unirand_int_grain(-data_range // 2 + 1, data_range // 2, num_elem) a_c = gen_unirand_int_grain(0, q_23 - 1, num_elem) a_s = pmod(a - a_c, q_23) prot = ReluDgkClient(num_elem, q_23, q_16, work_bit, data_bit, fhe_builder_16, fhe_builder_23, "relu_dgk") blob_a_s = BlobTorch(num_elem, torch.float, prot.comm_base, "a") blob_max_s = BlobTorch(num_elem, torch.float, prot.comm_base, "max_s") torch_sync() blob_a_s.send(a_s) blob_max_s.prepare_recv() torch_sync() with NamedTimerInstance("Client Offline"): prot.offline() torch_sync() traffic_record.reset("client-offline") with NamedTimerInstance("Client Online"): prot.online(a_c) torch_sync() traffic_record.reset("client-online") max_s = blob_max_s.get_recv() check_correctness_online(a, max_s, prot.max_c) torch.cuda.empty_cache() end_communicate()
def test_client(): init_communicate(Config.client_rank) prot = Conv2dFheNttClient(modulus, fhe_builder, data_range, img_hw, filter_hw, num_input_channel, num_output_channel, "test_conv2d_fhe_ntt_comm", padding=padding) with NamedTimerInstance("Client Offline"): prot.offline(input_mask) torch_sync() blob_output_c = BlobTorch(prot.output_shape, torch.float, prot.comm_base, "output_c") torch_sync() blob_output_c.send(prot.output_c) end_communicate()
def test_client(): rank = Config.client_rank init_communicate(rank, master_address=master_address, master_port=master_port) warming_up_cuda() prot = FcSecureClient(modulus, data_range, num_input_unit, num_output_unit, fhe_builder, test_name) with NamedTimerInstance("Client Offline"): prot.offline(input_c) torch_sync() with NamedTimerInstance("Client Online"): prot.online() torch_sync() blob_output_c = BlobTorch(prot.output_shape, torch.float, prot.comm_base, "output_c") torch_sync() blob_output_c.send(prot.output_c) end_communicate()
def check_correctness(self, verify_func, is_argmax=False, truth=None): blob_input_img = BlobTorch(self.get_input_shape(), torch.float, self.comm_base, "input_img") blob_actual_output = BlobTorch(self.get_output_shape(), torch.float, self.comm_base, "actual_output") blob_truth = BlobTorch(1, torch.float, self.comm_base, "truth") if self.is_server(): blob_input_img.prepare_recv() blob_actual_output.prepare_recv() blob_truth.prepare_recv() torch_sync() input_img = blob_input_img.get_recv() actual_output = blob_actual_output.get_recv() truth = int(blob_truth.get_recv().item()) verify_func(self, input_img, actual_output, self.q_23) actual_output = nmod(actual_output, self.q_23).cuda() _, actual_max = torch.max(actual_output, 0) print(f"truth: {truth}, actual: {actual_max}, MatchTruth: {truth == actual_max}") if self.is_client(): torch_sync() actual_output = self.secure_nn_core.get_argmax_output() if is_argmax else self.secure_nn_core.get_output() blob_input_img.send(self.input_img) blob_actual_output.send(actual_output) blob_truth.send(torch.tensor(truth)) return self
def test_server(): rank = Config.server_rank init_communicate(Config.server_rank, master_address=master_address, master_port=master_port) traffic_record = TrafficRecord() fhe_builder_16 = FheBuilder(q_16, Config.n_16) fhe_builder_23 = FheBuilder(q_23, Config.n_23) comm_fhe_16 = CommFheBuilder(rank, fhe_builder_16, "fhe_builder_16") comm_fhe_23 = CommFheBuilder(rank, fhe_builder_23, "fhe_builder_23") torch_sync() comm_fhe_16.recv_public_key() comm_fhe_23.recv_public_key() comm_fhe_16.wait_and_build_public_key() comm_fhe_23.wait_and_build_public_key() prot = ReluDgkServer(num_elem, q_23, q_16, work_bit, data_bit, fhe_builder_16, fhe_builder_23, "relu_dgk") blob_a_s = BlobTorch(num_elem, torch.float, prot.comm_base, "a") blob_max_s = BlobTorch(num_elem, torch.float, prot.comm_base, "max_s") torch_sync() blob_a_s.prepare_recv() a_s = blob_a_s.get_recv() torch_sync() with NamedTimerInstance("Server Offline"): prot.offline() torch_sync() traffic_record.reset("server-offline") with NamedTimerInstance("Server Online"): prot.online(a_s) torch_sync() traffic_record.reset("server-online") blob_max_s.send(prot.max_s) torch.cuda.empty_cache() end_communicate()
def test_client(): rank = Config.client_rank init_communicate(rank, master_address=master_address, master_port=master_port) warming_up_cuda() traffic_record = TrafficRecord() fhe_builder_16 = FheBuilder(q_16, n_16) fhe_builder_23 = FheBuilder(q_23, n_23) fhe_builder_16.generate_keys() fhe_builder_23.generate_keys() comm_fhe_16 = CommFheBuilder(rank, fhe_builder_16, "fhe_builder_16") comm_fhe_23 = CommFheBuilder(rank, fhe_builder_23, "fhe_builder_23") torch_sync() comm_fhe_16.send_public_key() comm_fhe_23.send_public_key() dgk = DgkBitClient(num_elem, q_23, q_16, work_bit, data_bit, fhe_builder_16, fhe_builder_23, "DgkBitTest") x = gen_unirand_int_grain(-data_range // 2 + 1, data_range // 2, num_elem) y = gen_unirand_int_grain(-data_range // 2 + 1, data_range // 2, num_elem) x_c = gen_unirand_int_grain(-data_range // 2 + 1, data_range // 2, num_elem) y_c = gen_unirand_int_grain(-data_range // 2 + 1, data_range // 2, num_elem) x_s = pmod(x - x_c, q_23) y_s = pmod(y - y_c, q_23) y_sub_x_s = pmod(y_s - x_s, q_23) x_blob = BlobTorch(num_elem, torch.float, dgk.comm_base, "x") y_blob = BlobTorch(num_elem, torch.float, dgk.comm_base, "y") y_sub_x_s_blob = BlobTorch(num_elem, torch.float, dgk.comm_base, "y_sub_x_s") torch_sync() x_blob.send(x) y_blob.send(y) y_sub_x_s_blob.send(y_sub_x_s) torch_sync() with NamedTimerInstance("Client Offline"): dgk.offline() y_sub_x_c = pmod(y_c - x_c, q_23) traffic_record.reset("client-offline") torch_sync() with NamedTimerInstance("Client Online"): dgk.online(y_sub_x_c) traffic_record.reset("client-online") dgk_x_leq_y_c_blob = BlobTorch(num_elem, torch.float, dgk.comm_base, "dgk_x_leq_y_c") correct_mod_div_work_c_blob = BlobTorch(num_elem, torch.float, dgk.comm_base, "correct_mod_div_work_c") z_blob = BlobTorch(num_elem, torch.float, dgk.comm_base, "z") torch_sync() dgk_x_leq_y_c_blob.send(dgk.dgk_x_leq_y_c) correct_mod_div_work_c_blob.send(dgk.correct_mod_div_work_c) z_blob.send(dgk.z) end_communicate()