# Recurrence if args.commnet and (args.recurrent or args.rnn_type == 'LSTM'): args.recurrent = True args.rnn_type = 'LSTM' parse_action_args(args) if args.seed == -1: args.seed = np.random.randint(0, 10000) torch.manual_seed(args.seed) #print(args) if args.commnet: policy_net = CommNetMLP(args, num_inputs) elif args.random: policy_net = Random(args, num_inputs) elif args.recurrent: policy_net = RNN(args, num_inputs) else: policy_net = MLP(args, num_inputs) if not args.display: display_models([policy_net]) # share parameters among threads, but not gradients for p in policy_net.parameters(): p.data.share_memory_() if args.nprocesses > 1:
parse_action_args(args) if args.seed == -1: args.seed = np.random.randint(0, 10000) torch.manual_seed(args.seed) print(args) if args.gacomm: policy_net = GACommNetMLP(args, num_inputs) elif args.commnet: if args.tarcomm: policy_net = TarCommNetMLP(args, num_inputs) else: policy_net = CommNetMLP(args, num_inputs) elif args.random: policy_net = Random(args, num_inputs) elif args.recurrent: policy_net = RNN(args, num_inputs) else: policy_net = MLP(args, num_inputs) if not args.display: display_models([policy_net]) # share parameters among threads, but not gradients for p in policy_net.parameters(): p.data.share_memory_() if args.env_name == 'grf':