def get_train_feat_proc(conf):
    train_feat_proc = torch.nn.Sequential(
        conf.train_specaugm_kw
        and features.SpecAugment(optim_level=0, **conf.train_specaugm_kw)
        or torch.nn.Identity(),
        features.FrameSplicing(optim_level=0, **conf.train_splicing_kw),
        features.FillPadding(optim_level=0,
                             max_seq_len=conf.max_spec_len_after_stacking),
    )
    return train_feat_proc
Exemple #2
0
def setup_validation_data_pipeline(conf, transducer_config):
    """ sets up and returns the data-loader for validation """
    logger.info("Setting up datasets for validation ...")

    val_manifests = [
        os.path.join(conf.data_dir, "librispeech-dev-clean-wav.json")
    ]

    # set right absolute path for sentpiece_model
    transducer_config["tokenizer"]["sentpiece_model"] = os.path.join(
        conf.data_dir, '..', transducer_config["tokenizer"]["sentpiece_model"])
    tokenizer_kw = config.tokenizer(transducer_config)
    val_tokenizer = Tokenizer(**tokenizer_kw)

    val_dataset_kw, val_features_kw, val_splicing_kw, val_specaugm_kw = config.input(
        transducer_config, "val")

    sampler = IpuSimpleSampler(conf.samples_per_step, conf.num_instances,
                               conf.instance_idx)

    assert (conf.samples_per_step % conf.num_instances == 0)
    samples_per_step_per_instance = conf.samples_per_step // conf.num_instances
    logger.debug("DaliDataLoader SamplesPerStepPerInstance = {}".format(
        samples_per_step_per_instance))
    val_loader = DaliDataLoader(gpu_id=None,
                                dataset_path=conf.data_dir,
                                config_data=val_dataset_kw,
                                config_features=val_features_kw,
                                json_names=val_manifests,
                                batch_size=samples_per_step_per_instance,
                                sampler=sampler,
                                pipeline_type="val",
                                device_type="cpu",
                                tokenizer=val_tokenizer)
    conf.max_spec_len_after_stacking = round(
        val_loader.max_spec_len_before_stacking /
        val_splicing_kw["frame_subsampling"])
    conf.num_symbols = val_tokenizer.num_labels + 1

    val_feat_proc = torch.nn.Sequential(
        val_specaugm_kw
        and features.SpecAugment(optim_level=0, **val_specaugm_kw)
        or torch.nn.Identity(),
        features.FrameSplicing(optim_level=0, **val_splicing_kw),
        features.FillPadding(optim_level=0,
                             max_seq_len=conf.max_spec_len_after_stacking),
    )
    return val_loader, val_feat_proc, val_tokenizer
def main():
    parser = get_parser()
    args = parser.parse_args()

    log_fpath = args.log_file or str(Path(args.output_dir, 'nvlog_infer.json'))
    log_fpath = unique_log_fpath(log_fpath)
    dllogger.init(backends=[
        JSONStreamBackend(Verbosity.DEFAULT, log_fpath),
        StdOutBackend(Verbosity.VERBOSE, metric_format=stdout_metric_format)
    ])

    [dllogger.log("PARAMETER", {k: v}) for k, v in vars(args).items()]

    for step in ['DNN', 'data+DNN', 'data']:
        for c in [0.99, 0.95, 0.9, 0.5]:
            cs = 'avg' if c == 0.5 else f'{int(100*c)}%'
            dllogger.metadata(f'{step.lower()}_latency_{c}', {
                'name': f'{step} latency {cs}',
                'format': ':>7.2f',
                'unit': 'ms'
            })
    dllogger.metadata('eval_wer', {
        'name': 'WER',
        'format': ':>3.3f',
        'unit': '%'
    })

    if args.cpu:
        device = torch.device('cpu')
    else:
        assert torch.cuda.is_available()
        device = torch.device('cuda')
        torch.backends.cudnn.benchmark = args.cudnn_benchmark

    if args.seed is not None:
        torch.manual_seed(args.seed + args.local_rank)
        np.random.seed(args.seed + args.local_rank)
        random.seed(args.seed + args.local_rank)

    # set up distributed training
    multi_gpu = not args.cpu and int(os.environ.get('WORLD_SIZE', 1)) > 1
    if multi_gpu:
        torch.cuda.set_device(args.local_rank)
        distrib.init_process_group(backend='nccl', init_method='env://')
        print_once(f'Inference with {distrib.get_world_size()} GPUs')

    cfg = config.load(args.model_config)

    if args.max_duration is not None:
        cfg['input_val']['audio_dataset']['max_duration'] = args.max_duration
        cfg['input_val']['filterbank_features'][
            'max_duration'] = args.max_duration

    if args.pad_to_max_duration:
        assert cfg['input_val']['audio_dataset']['max_duration'] > 0
        cfg['input_val']['audio_dataset']['pad_to_max_duration'] = True
        cfg['input_val']['filterbank_features']['pad_to_max_duration'] = True

    use_dali = args.dali_device in ('cpu', 'gpu')

    (dataset_kw, features_kw, splicing_kw, _, _) = config.input(cfg, 'val')

    tokenizer_kw = config.tokenizer(cfg)
    tokenizer = Tokenizer(**tokenizer_kw)

    optim_level = 3 if args.amp else 0

    feature_proc = torch.nn.Sequential(
        torch.nn.Identity(),
        torch.nn.Identity(),
        features.FrameSplicing(optim_level=optim_level, **splicing_kw),
        features.FillPadding(optim_level=optim_level, ),
    )

    # dataset

    data_loader = DaliDataLoader(gpu_id=args.local_rank or 0,
                                 dataset_path=args.dataset_dir,
                                 config_data=dataset_kw,
                                 config_features=features_kw,
                                 json_names=[args.val_manifest],
                                 batch_size=args.batch_size,
                                 sampler=dali_sampler.SimpleSampler(),
                                 pipeline_type="val",
                                 device_type=args.dali_device,
                                 tokenizer=tokenizer)

    model = RNNT(n_classes=tokenizer.num_labels + 1, **config.rnnt(cfg))

    if args.ckpt is not None:
        print(f'Loading the model from {args.ckpt} ...')
        checkpoint = torch.load(args.ckpt, map_location="cpu")
        key = 'ema_state_dict' if args.ema else 'state_dict'
        state_dict = checkpoint[key]
        model.load_state_dict(state_dict, strict=True)

    model.to(device)
    model.eval()

    if feature_proc is not None:
        feature_proc.to(device)
        feature_proc.eval()

    if args.amp:
        model = amp.initialize(model, opt_level='O3')

    if multi_gpu:
        model = DistributedDataParallel(model)

    agg = {'txts': [], 'preds': [], 'logits': []}
    dur = {'data': [], 'dnn': [], 'data+dnn': []}

    rep_loader = chain(*repeat(data_loader, args.repeats))
    rep_len = args.repeats * len(data_loader)

    blank_idx = tokenizer.num_labels
    greedy_decoder = RNNTGreedyDecoder(blank_idx=blank_idx)

    def sync_time():
        torch.cuda.synchronize() if device.type == 'cuda' else None
        return time.perf_counter()

    sz = []
    with torch.no_grad():

        for it, batch in enumerate(tqdm.tqdm(rep_loader, total=rep_len)):

            if use_dali:
                feats, feat_lens, txt, txt_lens = batch
                if feature_proc is not None:
                    feats, feat_lens = feature_proc([feats, feat_lens])
            else:
                batch = [t.cuda(non_blocking=True) for t in batch]
                audio, audio_lens, txt, txt_lens = batch
                feats, feat_lens = feature_proc([audio, audio_lens])
            feats = feats.permute(2, 0, 1)
            if args.amp:
                feats = feats.half()

            sz.append(feats.size(0))

            t1 = sync_time()
            log_probs, log_prob_lens = model(feats, feat_lens, txt, txt_lens)
            t2 = sync_time()

            # burn-in period; wait for a new loader due to num_workers
            if it >= 1 and (args.repeats == 1 or it >= len(data_loader)):
                dur['data'].append(t1 - t0)
                dur['dnn'].append(t2 - t1)
                dur['data+dnn'].append(t2 - t0)

            if txt is not None:
                agg['txts'] += helpers.gather_transcripts([txt], [txt_lens],
                                                          tokenizer.detokenize)

            preds = greedy_decoder.decode(model, feats, feat_lens)

            agg['preds'] += helpers.gather_predictions([preds],
                                                       tokenizer.detokenize)

            if 0 < args.steps < it:
                break

            t0 = sync_time()

        # communicate the results
        if args.transcribe_wav:
            for idx, p in enumerate(agg['preds']):
                print_once(f'Prediction {idx+1: >3}: {p}')

        elif args.transcribe_filelist:
            pass

        else:
            wer, loss = process_evaluation_epoch(agg)

            if not multi_gpu or distrib.get_rank() == 0:
                dllogger.log(step=(), data={'eval_wer': 100 * wer})

        if args.save_predictions:
            with open(args.save_predictions, 'w') as f:
                f.write('\n'.join(agg['preds']))

    # report timings
    if len(dur['data']) >= 20:
        ratios = [0.9, 0.95, 0.99]

        for stage in dur:
            lat = durs_to_percentiles(dur[stage], ratios)
            for k in [0.99, 0.95, 0.9, 0.5]:
                kk = str(k).replace('.', '_')
                dllogger.log(step=(),
                             data={f'{stage.lower()}_latency_{kk}': lat[k]})

    else:
        # TODO measure at least avg latency
        print_once('Not enough samples to measure latencies.')
Exemple #4
0
def main():
    logging.configure_logger('RNNT')
    logging.log_start(logging.constants.INIT_START)

    args = parse_args()

    assert(torch.cuda.is_available())
    assert args.prediction_frequency is None or args.prediction_frequency % args.log_frequency == 0

    torch.backends.cudnn.benchmark = args.cudnn_benchmark

    # set up distributed training
    multi_gpu = int(os.environ.get('WORLD_SIZE', 1)) > 1
    if multi_gpu:
        torch.cuda.set_device(args.local_rank)
        dist.init_process_group(backend='nccl', init_method='env://')
        world_size = dist.get_world_size()
        print_once(f'Distributed training with {world_size} GPUs\n')
    else:
        world_size = 1

    if args.seed is not None:
        logging.log_event(logging.constants.SEED, value=args.seed)
        torch.manual_seed(args.seed + args.local_rank)
        np.random.seed(args.seed + args.local_rank)
        random.seed(args.seed + args.local_rank)
        # np_rng is used for buckets generation, and needs the same seed on every worker
        np_rng = np.random.default_rng(seed=args.seed)

    init_log(args)

    cfg = config.load(args.model_config)
    config.apply_duration_flags(cfg, args.max_duration)

    assert args.grad_accumulation_steps >= 1
    assert args.batch_size % args.grad_accumulation_steps == 0, f'{args.batch_size} % {args.grad_accumulation_steps} != 0'
    logging.log_event(logging.constants.GRADIENT_ACCUMULATION_STEPS, value=args.grad_accumulation_steps)
    batch_size = args.batch_size // args.grad_accumulation_steps

    logging.log_event(logging.constants.SUBMISSION_BENCHMARK, value=logging.constants.RNNT)
    logging.log_event(logging.constants.SUBMISSION_ORG, value='my-organization')
    logging.log_event(logging.constants.SUBMISSION_DIVISION, value=logging.constants.CLOSED) # closed or open
    logging.log_event(logging.constants.SUBMISSION_STATUS, value=logging.constants.ONPREM) # on-prem/cloud/research
    logging.log_event(logging.constants.SUBMISSION_PLATFORM, value='my platform')

    logging.log_end(logging.constants.INIT_STOP)
    if multi_gpu:
        torch.distributed.barrier()
    logging.log_start(logging.constants.RUN_START)
    if multi_gpu:
        torch.distributed.barrier()

    print_once('Setting up datasets...')
    (
        train_dataset_kw,
        train_features_kw,
        train_splicing_kw,
        train_specaugm_kw,
    ) = config.input(cfg, 'train')
    (
        val_dataset_kw,
        val_features_kw,
        val_splicing_kw,
        val_specaugm_kw,
    ) = config.input(cfg, 'val')

    logging.log_event(logging.constants.DATA_TRAIN_MAX_DURATION,
                      value=train_dataset_kw['max_duration'])
    logging.log_event(logging.constants.DATA_SPEED_PERTURBATON_MAX,
                      value=train_dataset_kw['speed_perturbation']['max_rate'])
    logging.log_event(logging.constants.DATA_SPEED_PERTURBATON_MIN,
                      value=train_dataset_kw['speed_perturbation']['min_rate'])
    logging.log_event(logging.constants.DATA_SPEC_AUGMENT_FREQ_N,
                      value=train_specaugm_kw['freq_masks'])
    logging.log_event(logging.constants.DATA_SPEC_AUGMENT_FREQ_MIN,
                      value=train_specaugm_kw['min_freq'])
    logging.log_event(logging.constants.DATA_SPEC_AUGMENT_FREQ_MAX,
                      value=train_specaugm_kw['max_freq'])
    logging.log_event(logging.constants.DATA_SPEC_AUGMENT_TIME_N,
                      value=train_specaugm_kw['time_masks'])
    logging.log_event(logging.constants.DATA_SPEC_AUGMENT_TIME_MIN,
                      value=train_specaugm_kw['min_time'])
    logging.log_event(logging.constants.DATA_SPEC_AUGMENT_TIME_MAX,
                      value=train_specaugm_kw['max_time'])
    logging.log_event(logging.constants.GLOBAL_BATCH_SIZE,
                      value=batch_size * world_size * args.grad_accumulation_steps)

    tokenizer_kw = config.tokenizer(cfg)
    tokenizer = Tokenizer(**tokenizer_kw)

    class PermuteAudio(torch.nn.Module):
        def forward(self, x):
            return (x[0].permute(2, 0, 1), *x[1:])

    train_augmentations = torch.nn.Sequential(
        train_specaugm_kw and features.SpecAugment(optim_level=args.amp, **train_specaugm_kw) or torch.nn.Identity(),
        features.FrameSplicing(optim_level=args.amp, **train_splicing_kw),
        PermuteAudio(),
    )
    val_augmentations = torch.nn.Sequential(
        val_specaugm_kw and features.SpecAugment(optim_level=args.amp, **val_specaugm_kw) or torch.nn.Identity(),
        features.FrameSplicing(optim_level=args.amp, **val_splicing_kw),
        PermuteAudio(),
    )

    logging.log_event(logging.constants.DATA_TRAIN_NUM_BUCKETS, value=args.num_buckets)

    if args.num_buckets is not None:
        sampler = dali_sampler.BucketingSampler(
            args.num_buckets,
            batch_size,
            world_size,
            args.epochs,
            np_rng
        )
    else:
        sampler = dali_sampler.SimpleSampler()

    train_loader = DaliDataLoader(gpu_id=args.local_rank,
                                  dataset_path=args.dataset_dir,
                                  config_data=train_dataset_kw,
                                  config_features=train_features_kw,
                                  json_names=args.train_manifests,
                                  batch_size=batch_size,
                                  sampler=sampler,
                                  grad_accumulation_steps=args.grad_accumulation_steps,
                                  pipeline_type="train",
                                  device_type=args.dali_device,
                                  tokenizer=tokenizer)

    val_loader = DaliDataLoader(gpu_id=args.local_rank,
                                    dataset_path=args.dataset_dir,
                                    config_data=val_dataset_kw,
                                    config_features=val_features_kw,
                                    json_names=args.val_manifests,
                                    batch_size=args.val_batch_size,
                                    sampler=dali_sampler.SimpleSampler(),
                                    pipeline_type="val",
                                    device_type=args.dali_device,
                                    tokenizer=tokenizer)

    train_feat_proc = train_augmentations
    val_feat_proc   = val_augmentations

    train_feat_proc.cuda()
    val_feat_proc.cuda()

    steps_per_epoch = len(train_loader) // args.grad_accumulation_steps

    logging.log_event(logging.constants.TRAIN_SAMPLES, value=train_loader.dataset_size)
    logging.log_event(logging.constants.EVAL_SAMPLES, value=val_loader.dataset_size)

    # set up the model
    rnnt_config = config.rnnt(cfg)
    logging.log_event(logging.constants.MODEL_WEIGHTS_INITIALIZATION_SCALE, value=args.weights_init_scale)
    if args.weights_init_scale is not None:
        rnnt_config['weights_init_scale'] = args.weights_init_scale
    if args.hidden_hidden_bias_scale is not None:
        rnnt_config['hidden_hidden_bias_scale'] = args.hidden_hidden_bias_scale
    model = RNNT(n_classes=tokenizer.num_labels + 1, **rnnt_config)
    model.cuda()
    blank_idx = tokenizer.num_labels
    loss_fn = RNNTLoss(blank_idx=blank_idx)
    logging.log_event(logging.constants.EVAL_MAX_PREDICTION_SYMBOLS, value=args.max_symbol_per_sample)
    greedy_decoder = RNNTGreedyDecoder( blank_idx=blank_idx,
                                        max_symbol_per_sample=args.max_symbol_per_sample)

    print_once(f'Model size: {num_weights(model) / 10**6:.1f}M params\n')

    opt_eps=1e-9
    logging.log_event(logging.constants.OPT_NAME, value='lamb')
    logging.log_event(logging.constants.OPT_BASE_LR, value=args.lr)
    logging.log_event(logging.constants.OPT_LAMB_EPSILON, value=opt_eps)
    logging.log_event(logging.constants.OPT_LAMB_LR_DECAY_POLY_POWER, value=args.lr_exp_gamma)
    logging.log_event(logging.constants.OPT_LR_WARMUP_EPOCHS, value=args.warmup_epochs)
    logging.log_event(logging.constants.OPT_LAMB_LR_HOLD_EPOCHS, value=args.hold_epochs)
    logging.log_event(logging.constants.OPT_LAMB_BETA_1, value=args.beta1)
    logging.log_event(logging.constants.OPT_LAMB_BETA_2, value=args.beta2)
    logging.log_event(logging.constants.OPT_GRADIENT_CLIP_NORM, value=args.clip_norm)
    logging.log_event(logging.constants.OPT_LR_ALT_DECAY_FUNC, value=True)
    logging.log_event(logging.constants.OPT_LR_ALT_WARMUP_FUNC, value=True)
    logging.log_event(logging.constants.OPT_LAMB_LR_MIN, value=args.min_lr)
    logging.log_event(logging.constants.OPT_WEIGHT_DECAY, value=args.weight_decay)

    # optimization
    kw = {'params': model.param_groups(args.lr), 'lr': args.lr,
          'weight_decay': args.weight_decay}

    initial_lrs = [group['lr'] for group in kw['params']]

    print_once(f'Starting with LRs: {initial_lrs}')
    optimizer = FusedLAMB(betas=(args.beta1, args.beta2), eps=opt_eps, **kw)

    adjust_lr = lambda step, epoch: lr_policy(
        step, epoch, initial_lrs, optimizer, steps_per_epoch=steps_per_epoch,
        warmup_epochs=args.warmup_epochs, hold_epochs=args.hold_epochs,
        min_lr=args.min_lr, exp_gamma=args.lr_exp_gamma)

    if args.amp:
        model, optimizer = amp.initialize(
            models=model,
            optimizers=optimizer,
            opt_level='O1',
            max_loss_scale=512.0)

    if args.ema > 0:
        ema_model = copy.deepcopy(model).cuda()
    else:
        ema_model = None
    logging.log_event(logging.constants.MODEL_EVAL_EMA_FACTOR, value=args.ema)

    if multi_gpu:
        model = DistributedDataParallel(model)

    # load checkpoint
    meta = {'best_wer': 10**6, 'start_epoch': 0}
    checkpointer = Checkpointer(args.output_dir, 'RNN-T',
                                args.keep_milestones, args.amp)
    if args.resume:
        args.ckpt = checkpointer.last_checkpoint() or args.ckpt

    if args.ckpt is not None:
        checkpointer.load(args.ckpt, model, ema_model, optimizer, meta)

    start_epoch = meta['start_epoch']
    best_wer = meta['best_wer']
    last_wer = meta['best_wer']
    epoch = 1
    step = start_epoch * steps_per_epoch + 1

    # training loop
    model.train()
    for epoch in range(start_epoch + 1, args.epochs + 1):

        logging.log_start(logging.constants.BLOCK_START,
                          metadata=dict(first_epoch_num=epoch,
                                        epoch_count=1))
        logging.log_start(logging.constants.EPOCH_START,
                          metadata=dict(epoch_num=epoch))

        epoch_utts = 0
        accumulated_batches = 0
        epoch_start_time = time.time()

        for batch in train_loader:

            if accumulated_batches == 0:
                adjust_lr(step, epoch)
                optimizer.zero_grad()
                step_utts = 0
                step_start_time = time.time()
                all_feat_lens = []

            audio, audio_lens, txt, txt_lens = batch

            feats, feat_lens = train_feat_proc([audio, audio_lens])
            all_feat_lens += feat_lens

            log_probs, log_prob_lens = model(feats, feat_lens, txt, txt_lens)
            loss = loss_fn(log_probs[:, :log_prob_lens.max().item()],
                                      log_prob_lens, txt, txt_lens)

            loss /= args.grad_accumulation_steps

            del log_probs, log_prob_lens

            if torch.isnan(loss).any():
                print_once(f'WARNING: loss is NaN; skipping update')
            else:
                if args.amp:
                    with amp.scale_loss(loss, optimizer) as scaled_loss:
                        scaled_loss.backward()
                else:
                    loss.backward()
                loss_item = loss.item()
                del loss
                step_utts += batch[0].size(0) * world_size
                epoch_utts += batch[0].size(0) * world_size
                accumulated_batches += 1

            if accumulated_batches % args.grad_accumulation_steps == 0:

                if args.clip_norm is not None:
                    torch.nn.utils.clip_grad_norm_(
                        getattr(model, 'module', model).parameters(),
                        max_norm=args.clip_norm,
                        norm_type=2)

                total_norm = 0.0

                try:
                    if args.log_norm:
                        for p in getattr(model, 'module', model).parameters():
                            param_norm = p.grad.data.norm(2)
                            total_norm += param_norm.item() ** 2
                        total_norm = total_norm ** (1. / 2)
                except AttributeError as e:
                    print_once(f'Exception happened: {e}')
                    total_norm = 0.0

                optimizer.step()
                apply_ema(model, ema_model, args.ema)

                if step % args.log_frequency == 0:

                    if args.prediction_frequency is None or step % args.prediction_frequency == 0:
                        preds = greedy_decoder.decode(model, feats, feat_lens)
                        wer, pred_utt, ref = greedy_wer(
                                preds,
                                txt,
                                txt_lens,
                                tokenizer.detokenize)
                        print_once(f'  Decoded:   {pred_utt[:90]}')
                        print_once(f'  Reference: {ref[:90]}')
                        wer = {'wer': 100 * wer}
                    else:
                        wer = {}

                    step_time = time.time() - step_start_time

                    log((epoch, step % steps_per_epoch or steps_per_epoch, steps_per_epoch),
                        step, 'train',
                        {'loss': loss_item,
                         **wer,  # optional entry
                         'throughput': step_utts / step_time,
                         'took': step_time,
                         'grad-norm': total_norm,
                         'seq-len-min': min(all_feat_lens).item(),
                         'seq-len-max': max(all_feat_lens).item(),
                         'lrate': optimizer.param_groups[0]['lr']})

                step_start_time = time.time()

                step += 1
                accumulated_batches = 0
                # end of step

        logging.log_end(logging.constants.EPOCH_STOP,
                        metadata=dict(epoch_num=epoch))

        epoch_time = time.time() - epoch_start_time
        log((epoch,), None, 'train_avg', {'throughput': epoch_utts / epoch_time,
                                          'took': epoch_time})

        if epoch % args.val_frequency == 0:
            wer = evaluate(epoch, step, val_loader, val_feat_proc,
                           tokenizer.detokenize, ema_model, loss_fn,
                           greedy_decoder, args.amp)

            last_wer = wer
            if wer < best_wer and epoch >= args.save_best_from:
                checkpointer.save(model, ema_model, optimizer, epoch,
                                  step, best_wer, is_best=True)
                best_wer = wer

        save_this_epoch = (args.save_frequency is not None and epoch % args.save_frequency == 0) \
                       or (epoch in args.keep_milestones)
        if save_this_epoch:
            checkpointer.save(model, ema_model, optimizer, epoch, step, best_wer)

        logging.log_end(logging.constants.BLOCK_STOP, metadata=dict(first_epoch_num=epoch))

        if last_wer <= args.target:
            logging.log_end(logging.constants.RUN_STOP, metadata={'status': 'success'})
            print_once(f'Finished after {args.epochs_this_job} epochs.')
            break
        if 0 < args.epochs_this_job <= epoch - start_epoch:
            print_once(f'Finished after {args.epochs_this_job} epochs.')
            break
        # end of epoch

    log((), None, 'train_avg', {'throughput': epoch_utts / epoch_time})

    if last_wer > args.target:
        logging.log_end(logging.constants.RUN_STOP, metadata={'status': 'aborted'})

    if epoch == args.epochs:
        evaluate(epoch, step, val_loader, val_feat_proc, tokenizer.detokenize,
                 ema_model, loss_fn, greedy_decoder, args.amp)

    flush_log()
    if args.save_at_the_end:
        checkpointer.save(model, ema_model, optimizer, epoch, step, best_wer)