OUTPUT_PATH = Path("output") / "val_probas" dataset_path = Path( "/home/fast_storage/imaterialist-challenge-furniture-2018/") SAVE_PROBAS = True # SAMPLE_SUBMISSION_PATH = dataset_path / "sample_submission_randomlabel.csv" TEST_TRANSFORMS = [ RandomResizedCrop(350, scale=(0.7, 1.0), interpolation=3), RandomHorizontalFlip(p=0.5), ColorJitter(hue=0.12, brightness=0.12), ToTensor(), Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ] N_CLASSES = 128 BATCH_SIZE = 64 NUM_WORKERS = 15 TEST_LOADER = get_test_data_loader(dataset_path=dataset_path / "validation", test_data_transform=TEST_TRANSFORMS, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS, pin_memory=True) MODEL = (Path("output") / "train" / "train_nasnetalarge_350_random_resized_crop" / "20180509_1544" / "model_FurnitureNASNetALarge350_5_val_loss=0.5331665.pth").as_posix() N_TTA = 12
OUTPUT_PATH = "output" dataset_path = Path( "/home/fast_storage/imaterialist-challenge-furniture-2018/") SAVE_PROBAS = True # SAMPLE_SUBMISSION_PATH = dataset_path / "sample_submission_randomlabel.csv" TEST_TRANSFORMS = [ RandomResizedCrop(350, scale=(0.7, 1.0), interpolation=3), RandomVerticalFlip(p=0.5), RandomHorizontalFlip(p=0.5), ToTensor(), Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ] N_CLASSES = 128 BATCH_SIZE = 24 NUM_WORKERS = 15 TEST_LOADER = get_test_data_loader(dataset_path=dataset_path / "test", test_data_transform=TEST_TRANSFORMS, batch_size=BATCH_SIZE, num_workers=NUM_WORKERS, cuda=True) MODEL = ( Path(OUTPUT_PATH) / "training_FurnitureInceptionResNet299_20180425_2324" / "model_FurnitureInceptionResNet299_10_val_loss=0.5324794.pth").as_posix() N_TTA = 12