def _setup_eval(self, eval_data: evdata.EvalData): self.prepare, self.id_ = analysis.get_confidence_entry_preparation( eval_data, 'probabilities') self.load_params = analysis.Loader.Params(eval_data.confidence_entry) metric = ev.ComposeEvaluation([ ev.LambdaEvaluation(lambda x: x.min(), ('probabilities', ), 'min'), ev.LambdaEvaluation(lambda x: x.max(), ('probabilities', ), 'max') ]) hook = hooks.WriteSummaryCsvHook( os.path.join(self.min_max_dir, dirs.MINMAX_PLACEHOLDER.format(self.id_)), confidence_entry=eval_data.confidence_entry) self.eval_cases = [EvalCase(metric, hook)]
def _setup_eval(self, eval_data: evdata.EvalData): self.prepare, self.id_ = analysis.get_probability_preparation( eval_data, rescale_confidence=self.rescale_confidence, rescale_sigma=self.rescale_sigma, min_max_dir=self.min_max_dir) self.load_params = analysis.Loader.Params( eval_data.confidence_entry, need_t2_mask=self.need_t2_mask) metric = ev.ComposeEvaluation( [*self._m, ev.DiceNumpy(), ev.ConfusionMatrix()]) hook = hooks.ReducedComposeEvalHook([ hooks.WriteCsvHook(os.path.join( self.out_dir, dirs.ECE_PLACEHOLDER.format(self.id_)), entries=(*self.ece_entries, 'dice', 'tp', 'tn', 'fp', 'fn', 'n')) ]) self.eval_cases = [EvalCase(metric, hook)]
def _setup_eval(self, eval_data: evdata.EvalData): self.prepare, self.id_ = analysis.get_probability_preparation( eval_data, rescale_confidence=self.rescale_confidence, rescale_sigma=self.rescale_sigma, min_max_dir=self.min_max_dir) self.load_params = analysis.Loader.Params(eval_data.confidence_entry, need_t2_mask=self.need_mask) metric = ev.ComposeEvaluation([ ev.EceBinaryNumpy(threshold_range=None, return_bins=True, with_mask=self.need_mask), ev.DiceNumpy() ]) hook = hooks.ReducedComposeEvalHook([ hooks.WriteBinsCsvHook( os.path.join(self.out_dir, dirs.CALIBRATION_PLACEHOLDER.format(self.id_))) ]) self.eval_cases = [EvalCase(metric, hook)]
def __init__(self) -> None: super().__init__() self.evaluate = ev.ComposeEvaluation([ev.DiceNumpy()])
def __init__(self) -> None: super().__init__() self.evaluate = eval.ComposeEvaluation([eval.SmoothDice('dice')])
def __init__(self) -> None: super().__init__() self.evaluate = ev.ComposeEvaluation([ev.DiceNumpy(), # ev2.EntropyEval(entropy_threshold=0.7, with_ratios=False), ev.LogLossSklearn()])