Exemple #1
0
    def evaluate(self, jobs):
        '''
        Evaluates a given list of jobs, avoiding calculating duplicates.
        :param jobs: list of jobs with scores to be computed
        :return: list of individuals with scores computed
        '''
        self.results = []

        job_keys = set(map(lambda x: x.get_key(), jobs))

        inner_jobs = []

        for phenotype, epochs, seed in job_keys:
            individual = Individual(phenotype)
            j = Job(individual, epochs, seed)
            inner_jobs.append(j)

        inner_results = {}

        expected_results = len(inner_jobs)
        while len(inner_results) < expected_results:
            # makes adding new workers while the script
            # is running possible
            self.__add_workers()
            for worker in self.workers[:]:
                if worker.is_available() and inner_jobs:
                    job = inner_jobs.pop()
                    print("Worker available. Assigning job ({}/{}): {}".format(
                        expected_results - len(inner_jobs), expected_results,
                        job))
                    success = worker.assign_job(job)
                    if not success:
                        print("Worker %s broken in assigning job,"
                              " removing from pool and reasigning job" %
                              worker.ip)
                        inner_jobs.append(worker.get_current_job())
                        self.workers.remove(worker)
            for worker in self.workers[:]:
                try:
                    if not worker.is_available():
                        if worker.has_result():
                            result = worker.get_result()
                            job = worker.get_current_job()
                            inner_results[job.get_key()] = result
                            worker.free_worker()
                except Exception as e:
                    print(e)
                    print("Worker %s broken in result collection,"
                          " removing from pool and reasigning job" % worker.ip)
                    inner_jobs.append(worker.get_current_job())
                    self.workers.remove(worker)
            time.sleep(1)
        for job in jobs:
            key = job.get_key()
            result_copy = copy.deepcopy(inner_results[key])
            self.results.append(result_copy)

        return self.results
Exemple #2
0
def evaluate_scores(population,
                    workmanager,
                    computed_scores,
                    m=5,
                    layers=4,
                    seed=1337):
    jobs = []
    computed = []
    for individual in population:
        get_already_computed(individual, computed_scores, m, layers)
        if not individual.score:
            jobs.append(Job(individual, 1, seed))
        else:
            computed.append(individual)
    computed.extend(workmanager.evaluate(jobs))
    return computed
Exemple #3
0
from master.queue_handling import WorkManager
from common.helper_classes import Individual, Job

wm = WorkManager()
i1 = Individual((1,1,1,1))
i2 = Individual((1,1,1,1))
j1 = Job(i1)
j2 = Job(i2)
l = [j1, j2]
a = wm.evaluate(l)
for r in a:
    print(r)
from common.helper_classes import Job, Individual
from queue_handling import WorkManager

i = Individual((1, 1, 1, 1))
j = Job(i)

wm = WorkManager()
scores = []
jobs = []

for i in range(100):
    jobs.append(j)

population = wm.evaluate(jobs)

with open("variance.txt", 'w') as f:
    for individual in population:
        f.write("%s\n" % individual.score)
Exemple #5
0
import sys
from common.helper_classes import Job, Individual
import master.queue_handling as qh
from master.csv_handling import *

sys.path.append("..")

if __name__ == '__main__':

    filename = "cnn1.csv"

    codes_to_calculate = get_set_of_codes_from_filename(filename, N=100)

    jobs = []
    for code in set(codes_to_calculate):
        jobs.append(Job(Individual(genotype_to_phenotype(code, n=4, m=5)), epochs=10, seed=1337))

    wm = qh.WorkManager()
    calculated = wm.evaluate(jobs)
    save_csv_and_history("zbiorczy.csv", calculated, iteration=0, n=4, m=5)