Exemple #1
0
    def forward(self, x, add_noise=False):
        h = x

        if self.blur_k is None:
            k = np.asarray([1, 2, 1]).astype('f')
            k = k[:, None] * k[None, :]
            k = k / np.sum(k)
            self.blur_k = self.xp.asarray(k)[None, None, :]
        if self.enable_blur:
            h = blur(upscale2x(h), self.blur_k)
        else:
            h = upscale2x(h)
        h = self.c0(h)

        # h should be (batch, ch, size, size)
        if add_noise:
            h = self.n0(h)

        h = F.leaky_relu(self.b0(h))
        h = F.normalize(h)

        h = self.c1(h)
        if add_noise:
            h = self.n1(h)

        h = F.leaky_relu(self.b1(h))
        h = F.normalize(h)
        return h
Exemple #2
0
    def __call__(self, w, x=None, add_noise=False):
        h = x
        batch_size, _ = w.shape
        if self.upsample:
            assert h is not None
            if self.blur_k is None:
                k = np.asarray([1, 2, 1]).astype('f')
                k = k[:, None] * k[None, :]
                k = k / np.sum(k)
                self.blur_k = self.xp.asarray(k)[None, None, :]
            if self.enable_blur:
                h = blur(upscale2x(h), self.blur_k)
            else:
                h = upscale2x(h)
            h = self.c0(h)
        else:
            h = F.broadcast_to(self.W, (batch_size, self.ch_in, 4, 4))
        
        # h should be (batch, ch, size, size)
        if add_noise:
            h = self.n0(h)

        h = F.leaky_relu(self.b0(h))
        h = self.s0(w, h)

        h = self.c1(h)
        if add_noise:
            h = self.n1(h)

        h = F.leaky_relu(self.b1(h))
        h = self.s1(w, h)
        return h
Exemple #3
0
 def __call__(self, x):
     h = x
     h = F.leaky_relu((self.c0(h)))
     h = F.leaky_relu((self.c1(h)))
     if self.blur_k is None:
         k = np.asarray([1, 2, 1]).astype('f')
         k = k[:, None] * k[None, :]
         k = k / np.sum(k)
         self.blur_k = self.xp.asarray(k)[None, None, :]
     if self.enable_blur:
         h = blur(downscale2x(h), self.blur_k)
     else:
         h = downscale2x(h)
     return h
    def forward(self, x):
        shortcut = self.c_sc(x)

        res = F.leaky_relu((self.c0(x)))
        h = F.leaky_relu((self.c1(res) + shortcut))
        if self.blur_k is None:
            k = np.asarray([1, 2, 1]).astype('f')
            k = k[:, None] * k[None, :]
            k = k / np.sum(k)
            self.blur_k = self.xp.asarray(k)[None, None, :]
        if self.enable_blur:
            h = blur(downscale2x(h), self.blur_k)
        else:
            h = downscale2x(h)
        return h