def compute_normalized_ppca(self):
        """
        Compute PPCA.
        """

        nearest_neighbor_images = self.nearest_neighbor_images.reshape(self.nearest_neighbor_images.shape[0], -1)
        nearest_neighbor_images = nearest_neighbor_images[:self.args.n_fit]

        perturbations = self.perturbations.reshape(self.perturbations.shape[0], -1)
        test_images = self.test_images.reshape(self.test_images.shape[0], -1)
        pure_perturbations = perturbations - test_images

        nearest_neighbor_images_norms = numpy.linalg.norm(nearest_neighbor_images, ord=2, axis=1)
        perturbations_norms = numpy.linalg.norm(perturbations, ord=2, axis=1)
        test_images_norms = numpy.linalg.norm(test_images, ord=2, axis=1)
        pure_perturbations_norms = numpy.linalg.norm(pure_perturbations, ord=2, axis=1)

        success = numpy.logical_and(numpy.logical_and(self.success >= 0, self.accuracy), pure_perturbations_norms > 1e-4)
        log('[Detection] %d valid attacked samples' % numpy.sum(success))

        perturbations_norms = perturbations_norms[success]
        test_images_norms = test_images_norms[success]
        pure_perturbations_norms = pure_perturbations_norms[success]

        perturbations = perturbations[success]
        test_images = test_images[success]
        pure_perturbations = pure_perturbations[success]

        nearest_neighbor_images /= numpy.repeat(nearest_neighbor_images_norms.reshape(-1, 1), nearest_neighbor_images.shape[1], axis=1)
        perturbations /= numpy.repeat(perturbations_norms.reshape(-1, 1), perturbations.shape[1], axis=1)
        test_images /= numpy.repeat(test_images_norms.reshape(-1, 1), test_images.shape[1], axis=1)
        pure_perturbations /= numpy.repeat(pure_perturbations_norms.reshape(-1, 1), pure_perturbations.shape[1], axis=1)

        assert not numpy.any(nearest_neighbor_images != nearest_neighbor_images)
        assert not numpy.any(perturbations != perturbations)
        assert not numpy.any(test_images != test_images)
        assert not numpy.any(pure_perturbations != pure_perturbations)

        ppca = PPCA(n_components=self.args.n_pca)
        ppca.fit(nearest_neighbor_images)
        log('[Experiment] computed PPCA on nearest neighbor images')

        reconstructed_test_images = ppca.inverse_transform(ppca.transform(test_images))
        reconstructed_perturbations = ppca.inverse_transform(ppca.transform(perturbations))
        reconstructed_pure_perturbations = ppca.inverse_transform(ppca.transform(pure_perturbations))
        
        #self.probabilities['test'] = ppca.marginal(test_images)
        #self.probabilities['perturbation'] = ppca.marginal(perturbations)
        #self.probabilities['true'] = ppca.marginal(pure_perturbations)

        self.distances['test'] = numpy.average(numpy.multiply(reconstructed_test_images - test_images, reconstructed_test_images - test_images), axis=1)
        self.distances['perturbation'] = numpy.average(numpy.multiply(reconstructed_perturbations - perturbations, reconstructed_perturbations - perturbations), axis=1)
        self.distances['true'] = numpy.average(numpy.multiply(reconstructed_pure_perturbations - pure_perturbations, reconstructed_pure_perturbations - pure_perturbations), axis=1)

        self.angles['test'] = numpy.rad2deg(common.numpy.angles(test_images.T, reconstructed_test_images.T))
        self.angles['perturbation'] = numpy.rad2deg(common.numpy.angles(reconstructed_perturbations.T, perturbations.T))
        self.angles['true'] = numpy.rad2deg(common.numpy.angles(reconstructed_pure_perturbations.T, pure_perturbations.T))
    def compute_ppca(self):
        """
        Compute PPCA.
        """

        success = numpy.logical_and(self.success >= 0, self.accuracy)
        log('[Detection] %d valid attacked samples' % numpy.sum(success))

        nearest_neighbor_images = self.nearest_neighbor_images.reshape(self.nearest_neighbor_images.shape[0], -1)
        nearest_neighbor_images = nearest_neighbor_images[:self.args.n_fit]
        
        perturbations = self.perturbations.reshape(self.perturbations.shape[0], -1)
        test_images = self.test_images.reshape(self.test_images.shape[0], -1)
        pure_perturbations = perturbations - test_images

        ppca = PPCA(n_components=self.args.n_pca)
        ppca.fit(nearest_neighbor_images)
        log('[Experiment] computed PPCA on nearest neighbor images')

        reconstructed_test_images = ppca.inverse_transform(ppca.transform(test_images))
        reconstructed_perturbations = ppca.inverse_transform(ppca.transform(perturbations))
        reconstructed_pure_perturbations = ppca.inverse_transform(ppca.transform(pure_perturbations))

        self.distances['test'] = numpy.average(numpy.multiply(reconstructed_test_images - test_images, reconstructed_test_images - test_images), axis=1)
        self.distances['perturbation'] = numpy.average(numpy.multiply(reconstructed_perturbations - perturbations, reconstructed_perturbations - perturbations), axis=1)
        self.distances['true'] = numpy.average(numpy.multiply(reconstructed_pure_perturbations - pure_perturbations, reconstructed_pure_perturbations - pure_perturbations), axis=1)

        self.angles['test'] = numpy.rad2deg(common.numpy.angles(test_images.T, reconstructed_test_images.T))
        self.angles['perturbation'] = numpy.rad2deg(common.numpy.angles(reconstructed_perturbations.T, perturbations.T))
        self.angles['true'] = numpy.rad2deg(common.numpy.angles(reconstructed_pure_perturbations.T, pure_perturbations.T))

        self.distances['test'] = self.distances['test'][success]
        self.distances['perturbation'] = self.distances['perturbation'][success]
        self.distances['true'] = self.distances['true'][success]
    def compute_local_pca(self):
        """
        Compute PCA.
        """

        success = numpy.logical_and(self.success >= 0, self.accuracy)
        log('[Detection] %d valid attacked samples' % numpy.sum(success))

        nearest_neighbor_images = self.nearest_neighbor_images.reshape(self.nearest_neighbor_images.shape[0], -1)
        nearest_neighbor_images = nearest_neighbor_images[:self.args.n_fit]

        perturbations = self.perturbations.reshape(self.perturbations.shape[0], -1)
        test_images = self.test_images.reshape(self.test_images.shape[0], -1)
        pure_perturbations = perturbations - test_images

        nearest_neighbors_indices = self.compute_nearest_neighbors(perturbations)

        self.distances['true'] = numpy.zeros((success.shape[0]))
        self.distances['test'] = numpy.zeros((success.shape[0]))
        self.distances['perturbation'] = numpy.zeros((success.shape[0]))

        self.angles['true'] = numpy.zeros((success.shape[0]))
        self.angles['test'] = numpy.zeros((success.shape[0]))
        self.angles['perturbation'] = numpy.zeros((success.shape[0]))

        for n in range(pure_perturbations.shape[0]):
            if success[n]:
                nearest_neighbors = nearest_neighbor_images[nearest_neighbors_indices[n, :]]
                nearest_neighbors = numpy.concatenate((nearest_neighbors, test_images[n].reshape(1, -1)), axis=0)

                pca = sklearn.decomposition.IncrementalPCA(n_components=self.args.n_pca)
                pca.fit(nearest_neighbors)

                reconstructed_test_images = pca.inverse_transform(pca.transform(test_images[n].reshape(1, -1)))
                reconstructed_perturbations = pca.inverse_transform(pca.transform(perturbations[n].reshape(1, -1)))
                reconstructed_pure_perturbations = pca.inverse_transform(pca.transform(pure_perturbations[n].reshape(1, -1)))

                self.distances['test'][n] = numpy.average(numpy.multiply(reconstructed_test_images - test_images[n], reconstructed_test_images - test_images[n]), axis=1)
                self.distances['perturbation'][n] = numpy.average(numpy.multiply(reconstructed_perturbations - perturbations[n], reconstructed_perturbations - perturbations[n]), axis=1)
                self.distances['true'][n] = numpy.average(numpy.multiply(reconstructed_pure_perturbations - pure_perturbations[n], reconstructed_pure_perturbations - pure_perturbations[n]), axis=1)

                self.angles['test'][n] = numpy.rad2deg(common.numpy.angles(reconstructed_test_images.T, test_images[n].T))
                self.angles['perturbation'][n] = numpy.rad2deg(common.numpy.angles(reconstructed_perturbations.T, perturbations[n].T))
                self.angles['true'][n] = numpy.rad2deg(common.numpy.angles(reconstructed_pure_perturbations.T, pure_perturbations[n].T))

                log('[Detection] %d: true distance=%g angle=%g' % (n, self.distances['true'][n], self.angles['true'][n]))
                log('[Detection] %d: perturbation distance=%g angle=%g' % (n, self.distances['perturbation'][n], self.angles['perturbation'][n]))
                log('[Detection] %d: test distance=%g angle=%g' % (n, self.distances['test'][n], self.angles['test'][n]))

        self.distances['test'] = self.distances['test'][success]
        self.distances['perturbation'] = self.distances['perturbation'][success]
        self.distances['true'] = self.distances['true'][success]
Exemple #4
0
    def compute_statistics(self):
        """
        Compute statistics based on distances.
        """

        # That's the basis for all computation as we only want to consider successful attacks
        # on test samples that were correctly classified.
        raw_overall_success = numpy.logical_and(self.success >= 0, self.accuracy)

        # Important check, for on-manifold attack this will happen if the manifold is small and the model very accurate!
        if not numpy.any(raw_overall_success):
            for n in range(len(self.norms)):
                for type in ['raw_success', 'raw_iteration', 'raw_average', 'raw_image']:
                    self.results[n][type] = 0
                for type in ['raw_class_success', 'raw_class_average', 'raw_class_image']:
                    self.results[n][type] = numpy.zeros((self.N_class))
            if self.args.results_file:
                utils.write_pickle(self.args.results_file, self.results)
                log('[Testing] wrote %s' % self.args.results_file)
            return

        #
        # Compute nearest neighbor statistics in image space.
        #

        if self.args.plot_directory and self.args.plot_manifolds and utils.display():
            log('[Testing] computing nearest neighbor ...')
            nearest_neighbors_indices = self.compute_nearest_neighbors(self.perturbation_images[raw_overall_success])
            pure_perturbations = self.test_images[raw_overall_success] - self.perturbation_images[raw_overall_success]
            pure_perturbations_norm = numpy.linalg.norm(pure_perturbations, ord=2, axis=1)
            for k in range(10):
                direction = self.perturbation_images[raw_overall_success] - self.train_images[nearest_neighbors_indices[:, k]]
                direction_norm = numpy.linalg.norm(direction, ord=2, axis=1)
                dot_products = numpy.einsum('ij,ij->i', direction, pure_perturbations)
                dot_product_norms = numpy.multiply(pure_perturbations_norm, direction_norm)
                dot_products, dot_product_norms = dot_products[dot_product_norms > 10**-8], dot_product_norms[dot_product_norms > 10**-8]
                dot_products /= dot_product_norms
                dot_products = numpy.degrees(numpy.arccos(dot_products))

                # matplotlib's hsitogram plots give weird error if there are NaN values, so simple check:
                if dot_products.shape[0] > 0 and not numpy.any(dot_products != dot_products):
                    plot_file = os.path.join(self.args.plot_directory, 'dot_products_nn%d' % k)
                    plot.histogram(plot_file, dot_products, 100, xmin=numpy.min(dot_products), xmax=numpy.max(dot_products),
                                  title='Dot Products Between Adversarial Perturbations and Direction to Nearest Neighbor %d' % k,
                                  xlabel='Dot Product', ylabel='Count')
                    log('[Testing] wrote %s' % plot_file)

        #
        # We compute some simple statistics:
        # - raw success rate: fraction of successful attack without considering epsilon
        # - corrected success rate: fraction of successful attacks within epsilon-ball
        # - raw average perturbation: average distance to original samples (for successful attacks)
        # - corrected average perturbation: average distance to original samples for perturbations
        #   within epsilon-ball (for successful attacks).
        # These statistics can also be computed per class.
        # And these statistics are computed with respect to three norms.

        if self.args.plot_directory and utils.display():
            iterations = self.success[raw_overall_success]
            x = numpy.arange(numpy.max(iterations) + 1)
            y = numpy.bincount(iterations)
            plot_file = os.path.join(self.args.plot_directory, 'iterations')
            plot.bar(plot_file, x, y,
                    title='Distribution of Iterations of Successful Attacks', xlabel='Number of Iterations', ylabel='Count')
            log('[Testing] wrote %s' % plot_file)

        reference_perturbations = numpy.zeros(self.perturbations.shape)
        if self.args.N_theta > 4:
            reference_perturbations[:, 4] = 1

        for n in range(len(self.norms)):
            norm = self.norms[n]
            delta = numpy.linalg.norm(self.perturbations - reference_perturbations, norm, axis=1)
            image_delta = numpy.linalg.norm(self.test_images - self.perturbation_images, norm, axis=1)

            if self.args.plot_directory and utils.display():
                plot_file = os.path.join(self.args.plot_directory, 'distances_l%g' % norm)
                plot.histogram(plot_file, delta[raw_overall_success], 50, title='Distribution of $L_{%g}$ Distances of Successful Attacks' % norm,
                              xlabel='Distance', ylabel='Count')
                log('[Testing] wrote %s' % plot_file)

            debug_accuracy = numpy.sum(self.accuracy) / self.accuracy.shape[0]
            debug_attack_fraction = numpy.sum(raw_overall_success) / numpy.sum(self.success >= 0)
            debug_test_fraction = numpy.sum(raw_overall_success) / numpy.sum(self.accuracy)
            log('[Testing] attacked mode accuracy: %g' % debug_accuracy)
            log('[Testing] only %g of successful attacks are valid' % debug_attack_fraction)
            log('[Testing] only %g of correct samples are successfully attacked' % debug_test_fraction)

            N_accuracy = numpy.sum(self.accuracy)
            self.results[n]['raw_success'] = numpy.sum(raw_overall_success) / N_accuracy

            self.results[n]['raw_iteration'] = numpy.average(self.success[raw_overall_success])

            self.results[n]['raw_average'] = numpy.average(delta[raw_overall_success]) if numpy.any(raw_overall_success) else 0

            self.results[n]['raw_image'] = numpy.average(image_delta[raw_overall_success]) if numpy.any(raw_overall_success) else 0

            raw_class_success = numpy.zeros((self.N_class, self.perturbation_codes.shape[0]), bool)
            corrected_class_success = numpy.zeros((self.N_class, self.perturbation_codes.shape[0]), bool)

            self.results[n]['raw_class_success'] = numpy.zeros((self.N_class))

            self.results[n]['raw_class_average'] = numpy.zeros((self.N_class))

            self.results[n]['raw_class_image'] = numpy.zeros((self.N_class))

            for c in range(self.N_class):
                N_samples = numpy.sum(self.accuracy[self.perturbation_codes == c].astype(int))
                if N_samples <= 0:
                    continue;

                raw_class_success[c] = numpy.logical_and(raw_overall_success, self.perturbation_codes == c)

                self.results[n]['raw_class_success'][c] = numpy.sum(raw_class_success[c]) / N_samples

                if numpy.any(raw_class_success[c]):
                    self.results[n]['raw_class_average'][c] = numpy.average(delta[raw_class_success[c].astype(bool)])
                if numpy.any(corrected_class_success[c]):
                    self.results[n]['raw_class_image'][c] = numpy.average(image_delta[raw_class_success[c].astype(bool)])

        if self.args.results_file:
            utils.write_pickle(self.args.results_file, self.results)
            log('[Testing] wrote %s' % self.args.results_file)
    def test(self):
        """
        Test classifier to identify valid samples to attack.
        """

        self.model.eval()
        assert self.model.training is False
        assert self.perturbation_codes.shape[0] == self.perturbations.shape[0]
        assert self.test_codes.shape[0] == self.test_images.shape[0]
        assert len(self.perturbations.shape) == 4
        assert len(self.test_images.shape) == 4

        perturbations_accuracy = None
        num_batches = int(math.ceil(self.perturbations.shape[0] / self.args.batch_size))

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size, self.perturbations.shape[0])
            batch_perturbations = common.torch.as_variable(self.perturbations[b_start: b_end], self.args.use_gpu)
            batch_classes = common.torch.as_variable(self.perturbation_codes[b_start: b_end], self.args.use_gpu)
            batch_perturbations = batch_perturbations.permute(0, 3, 1, 2)

            output_classes = self.model(batch_perturbations)
            values, indices = torch.max(torch.nn.functional.softmax(output_classes, dim=1), dim=1)
            errors = torch.abs(indices - batch_classes)
            perturbations_accuracy = common.numpy.concatenate(perturbations_accuracy, errors.data.cpu().numpy())

            for n in range(batch_perturbations.size(0)):
                log('[Testing] %d: original success=%d, transfer accuracy=%d' % (n, self.original_success[b_start + n], errors[n].item()))

        self.transfer_success[perturbations_accuracy == 0] = -1
        self.transfer_success = self.transfer_success.reshape((self.N_samples, self.N_attempts))
        self.transfer_success = numpy.swapaxes(self.transfer_success, 0, 1)

        utils.makedir(os.path.dirname(self.args.transfer_success_file))
        utils.write_hdf5(self.args.transfer_success_file, self.transfer_success)
        log('[Testing] wrote %s' % self.args.transfer_success_file)

        num_batches = int(math.ceil(self.test_images.shape[0] / self.args.batch_size))
        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size, self.test_images.shape[0])
            batch_images = common.torch.as_variable(self.test_images[b_start: b_end], self.args.use_gpu)
            batch_classes = common.torch.as_variable(self.test_codes[b_start: b_end], self.args.use_gpu)
            batch_images = batch_images.permute(0, 3, 1, 2)

            output_classes = self.model(batch_images)
            values, indices = torch.max(torch.nn.functional.softmax(output_classes, dim=1), dim=1)
            errors = torch.abs(indices - batch_classes)

            self.transfer_accuracy = common.numpy.concatenate(self.transfer_accuracy, errors.data.cpu().numpy())

            if b % 100 == 0:
                log('[Testing] computing accuracy %d' % b)

        self.transfer_accuracy = self.transfer_accuracy == 0
        log('[Testing] original accuracy=%g' % (numpy.sum(self.original_accuracy)/float(self.original_accuracy.shape[0])))
        log('[Testing] transfer accuracy=%g' % (numpy.sum(self.transfer_accuracy)/float(self.transfer_accuracy.shape[0])))
        log('[Testing] accuracy difference=%g' % (numpy.sum(self.transfer_accuracy != self.original_accuracy)/float(self.transfer_accuracy.shape[0])))
        log('[Testing] accuracy difference on %d samples=%g' % (self.N_samples, numpy.sum(self.transfer_accuracy[:self.N_samples] != self.original_accuracy[:self.N_samples])/float(self.N_samples)))
        self.transfer_accuracy = numpy.logical_and(self.transfer_accuracy, self.original_accuracy)

        utils.makedir(os.path.dirname(self.args.transfer_accuracy_file))
        utils.write_hdf5(self.args.transfer_accuracy_file, self.transfer_accuracy)
        log('[Testing] wrote %s' % self.args.transfer_accuracy_file)
    def load_data_and_model(self):
        """
        Load data and model.
        """

        self.test_images = utils.read_hdf5(self.args.test_images_file).astype(
            numpy.float32)
        if len(self.test_images.shape) < 4:
            self.test_images = numpy.expand_dims(self.test_images, axis=3)
        resolution = self.test_images.shape[2]
        log('[Visualization] read %s' % self.args.test_images_file)

        self.test_codes = utils.read_hdf5(self.args.test_codes_file).astype(
            numpy.int)
        self.test_codes = self.test_codes[:, self.args.label_index]
        N_class = numpy.max(self.test_codes) + 1
        log('[Visualization] read %s' % self.args.test_codes_file)

        self.perturbations = utils.read_hdf5(
            self.args.perturbations_file).astype(numpy.float32)
        if len(self.perturbations.shape) < 5:
            self.perturbations = numpy.expand_dims(self.perturbations, axis=4)

        self.perturbations = numpy.swapaxes(self.perturbations, 0, 1)
        self.test_images = self.test_images[:self.perturbations.shape[0]]
        log('[Visualization] read %s' % self.args.perturbations_file)

        self.success = utils.read_hdf5(self.args.success_file)
        self.success = numpy.swapaxes(self.success, 0, 1)
        self.success = self.success >= 0
        log('[Visualization] read %s' % self.args.success_file)

        if self.args.selection_file:
            selection = utils.read_hdf5(self.args.selection_file)
            log('[Visualization] read %s' % self.args.selection_file)

            selection = numpy.swapaxes(selection, 0, 1)
            selection = selection[:self.success.shape[0]]
            selection = selection >= 0

            assert len(selection.shape) == len(self.success.shape)
            self.success = numpy.logical_and(self.success, selection)
            log('[Visualization] updated selection')

        self.accuracy = utils.read_hdf5(self.args.accuracy_file)
        log('[Visualization] read %s' % self.args.success_file)

        log('[Visualization] using %d input channels' %
            self.test_images.shape[3])
        network_units = list(map(int, self.args.network_units.split(',')))
        self.model = models.Classifier(
            N_class,
            resolution=(self.test_images.shape[3], self.test_images.shape[1],
                        self.test_images.shape[2]),
            architecture=self.args.network_architecture,
            activation=self.args.network_activation,
            batch_normalization=not self.args.network_no_batch_normalization,
            start_channels=self.args.network_channels,
            dropout=self.args.network_dropout,
            units=network_units)

        assert os.path.exists(
            self.args.classifier_file
        ), 'state file %s not found' % self.args.classifier_file
        state = State.load(self.args.classifier_file)
        log('[Visualization] read %s' % self.args.classifier_file)

        self.model.load_state_dict(state.model)
        if self.args.use_gpu and not cuda.is_cuda(self.model):
            log('[Visualization] classifier is not CUDA')
            self.model = self.model.cuda()
        log('[Visualization] loaded classifier')

        self.model.eval()
        log('[Visualization] set model to eval')
    def compute_nn(self, inclusive=False):
        """
        Test detector.
        """

        success = numpy.logical_and(self.success >= 0, self.accuracy)
        log('[Detection] %d valid attacked samples' % numpy.sum(success))

        nearest_neighbor_images = self.nearest_neighbor_images.reshape(self.nearest_neighbor_images.shape[0], -1)
        perturbations = self.perturbations.reshape(self.perturbations.shape[0], -1)
        test_images = self.test_images.reshape(self.test_images.shape[0], -1)

        nearest_neighbors_indices = self.compute_nearest_neighbors(perturbations)
        pure_perturbations = perturbations - test_images
        log('[Detection] computed nearest neighbors for perturbations')

        self.distances['true'] = numpy.zeros((success.shape[0]))
        self.distances['test'] = numpy.zeros((success.shape[0]))
        self.distances['perturbation'] = numpy.zeros((success.shape[0]))

        self.angles['true'] = numpy.zeros((success.shape[0]))
        self.angles['test'] = numpy.zeros((success.shape[0]))
        self.angles['perturbation'] = numpy.zeros((success.shape[0]))

        for n in range(pure_perturbations.shape[0]):
            if success[n]:
                nearest_neighbors = nearest_neighbor_images[nearest_neighbors_indices[n, :]]

                if inclusive:
                    nearest_neighbors = numpy.concatenate((nearest_neighbors, test_images[n].reshape(1, -1)), axis=0)
                    nearest_neighbor_mean = test_images[n]
                else:
                    nearest_neighbor_mean = numpy.average(nearest_neighbors, axis=0)

                nearest_neighbor_basis = nearest_neighbors - nearest_neighbor_mean

                relative_perturbation = perturbations[n] - nearest_neighbor_mean
                relative_test_image = test_images[n] - nearest_neighbor_mean

                if inclusive:
                    assert numpy.allclose(relative_test_image, nearest_neighbor_basis[-1])

                nearest_neighbor_vectors = numpy.stack((
                    pure_perturbations[n],
                    relative_perturbation,
                    relative_test_image
                ), axis=1)

                nearest_neighbor_projections = common.numpy.project_orthogonal(nearest_neighbor_basis.T, nearest_neighbor_vectors)
                assert nearest_neighbor_vectors.shape[0] == nearest_neighbor_projections.shape[0]
                assert nearest_neighbor_vectors.shape[1] == nearest_neighbor_projections.shape[1]

                angles = numpy.rad2deg(common.numpy.angles(nearest_neighbor_vectors, nearest_neighbor_projections))
                distances = numpy.linalg.norm(nearest_neighbor_vectors - nearest_neighbor_projections, ord=2, axis=0)

                assert distances.shape[0] == 3
                assert angles.shape[0] == 3

                self.distances['true'][n] = distances[0]
                self.distances['perturbation'][n] = distances[1]
                self.distances['test'][n] = distances[2]

                self.angles['true'][n] = angles[0]
                self.angles['perturbation'][n] = angles[1]
                self.angles['test'][n] = angles[2]

                log('[Detection] %d: true distance=%g angle=%g' % (n, self.distances['true'][n], self.angles['true'][n]))
                log('[Detection] %d: perturbation distance=%g angle=%g' % (n, self.distances['perturbation'][n], self.angles['perturbation'][n]))
                log('[Detection] %d: test distance=%g angle=%g' % (n, self.distances['test'][n], self.angles['test'][n]))

        self.distances['true'] = self.distances['true'][success]
        self.distances['test'] = self.distances['test'][success]
        self.distances['perturbation'] = self.distances['perturbation'][success]

        self.angles['true'] = self.angles['true'][success]
        self.angles['test'] = self.angles['test'][success]
        self.angles['perturbation'] = self.angles['perturbation'][success]

        if inclusive:
            self.distances['test'][:] = 0
            self.angles['test'][:] = 0
    def compute_appr(self):
        """
        Compute approximate.
        """

        assert self.test_codes is not None
        num_batches = int(math.ceil(self.perturbations.shape[0] / self.args.batch_size))

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size, self.perturbations.shape[0])

            batch_classes = common.torch.as_variable(self.test_codes[b_start: b_end], self.args.use_gpu)
            batch_theta = common.torch.as_variable(self.test_theta[b_start: b_end].astype(numpy.float32), self.args.use_gpu, True)
            batch_perturbation = common.torch.as_variable(self.perturbations[b_start: b_end].astype(numpy.float32), self.args.use_gpu)

            if isinstance(self.model, models.SelectiveDecoder):
                self.model.set_code(batch_classes)
            batch_theta = torch.nn.Parameter(batch_theta)
            optimizer = torch.optim.Adam([batch_theta], lr=0.1)

            log('[Detection] %d: start' % b)
            for t in range(100):
                optimizer.zero_grad()
                output_perturbation = self.model.forward(batch_theta)
                error = torch.mean(torch.mul(output_perturbation - batch_perturbation, output_perturbation - batch_perturbation))
                error.backward()
                optimizer.step()

                log('[Detection] %d: %d = %g' % (b, t, error.item()))

            output_perturbation = numpy.squeeze(output_perturbation.cpu().detach().numpy())
            self.projected_perturbations = common.numpy.concatenate(self.projected_perturbations, output_perturbation)

            batch_theta = common.torch.as_variable(self.test_theta[b_start: b_end].astype(numpy.float32), self.args.use_gpu, True)
            batch_images = common.torch.as_variable(self.test_images[b_start: b_end].astype(numpy.float32), self.args.use_gpu)

            batch_theta = torch.nn.Parameter(batch_theta)
            optimizer = torch.optim.Adam([batch_theta], lr=0.5)

            log('[Detection] %d: start' % b)
            for t in range(100):
                optimizer.zero_grad()
                output_images = self.model.forward(batch_theta)
                error = torch.mean(torch.mul(output_images - batch_images, output_images - batch_images))
                error.backward()
                optimizer.step()

                log('[Detection] %d: %d = %g' % (b, t, error.item()))

            output_images = numpy.squeeze(output_images.cpu().detach().numpy())
            self.projected_test_images = common.numpy.concatenate(self.projected_test_images, output_images)

        projected_perturbations = self.projected_perturbations.reshape((self.projected_perturbations.shape[0], -1))
        projected_test_images = self.projected_test_images.reshape((self.projected_test_images.shape[0], -1))

        perturbations = self.perturbations.reshape((self.perturbations.shape[0], -1))
        test_images = self.test_images.reshape((self.test_images.shape[0], -1))

        success = numpy.logical_and(self.success >= 0, self.accuracy)
        log('[Detection] %d valid attacked samples' % numpy.sum(success))

        self.distances['true'] = numpy.linalg.norm(perturbations - projected_perturbations, ord=2, axis=1)
        self.angles['true'] = numpy.rad2deg(common.numpy.angles(perturbations.T, projected_perturbations.T))

        self.distances['true'] = self.distances['true'][success]
        self.angles['true'] = self.angles['true'][success]

        self.distances['test'] = numpy.linalg.norm(test_images - projected_test_images, ord=2, axis=1)
        self.angles['test'] = numpy.rad2deg(common.numpy.angles(test_images.T, projected_test_images.T))

        self.distances['test'] = self.distances['test'][success]
        self.angles['test'] = self.angles['test'][success]
    def compute_true(self):
        """
        Compute true.
        """

        assert self.test_codes is not None
        num_batches = int(math.ceil(self.perturbations.shape[0] / self.args.batch_size))

        params = {
            'lr': 0.09,
            'lr_decay': 0.95,
            'lr_min': 0.0000001,
            'weight_decay': 0,
        }

        for b in range(num_batches):
            b_start = b * self.args.batch_size
            b_end = min((b + 1) * self.args.batch_size, self.perturbations.shape[0])

            batch_fonts = self.test_codes[b_start: b_end, 1]
            batch_classes = self.test_codes[b_start: b_end, 2]
            batch_code = numpy.concatenate((common.numpy.one_hot(batch_fonts, self.N_font), common.numpy.one_hot(batch_classes, self.N_class)), axis=1).astype( numpy.float32)
            batch_code = common.torch.as_variable(batch_code, self.args.use_gpu)

            batch_images = common.torch.as_variable(self.test_images[b_start: b_end], self.args.use_gpu)
            batch_images = batch_images.permute(0, 3, 1, 2)

            batch_theta = common.torch.as_variable(self.test_theta[b_start: b_end].astype(numpy.float32), self.args.use_gpu, True)
            batch_perturbation = common.torch.as_variable(self.perturbations[b_start: b_end].astype(numpy.float32), self.args.use_gpu)

            self.model.set_code(batch_code)

            #output_images = self.model.forward(batch_theta)
            #test_error = torch.mean(torch.mul(output_images - batch_images, output_images - batch_images))
            #print(test_error.item())
            #vis.mosaic('true.png', batch_images.cpu().detach().numpy()[:, 0, :, :])
            #vis.mosaic('output.png', output_images.cpu().detach().numpy()[:, 0, :, :])
            # print(batch_images.cpu().detach().numpy()[0])
            # print(output_images.cpu().detach().numpy()[0, 0])

            #_batch_images = batch_images.cpu().detach().numpy()
            #_output_images = output_images.cpu().detach().numpy()[:, 0, :, :]
            #test_error = numpy.max(numpy.abs(_batch_images.reshape(_batch_images.shape[0], -1) - _output_images.reshape(_output_images.shape[0], -1)), axis=1)
            #print(test_error)
            #test_error = numpy.mean(numpy.multiply(_batch_images - _output_images, _batch_images - _output_images), axis=1)
            #print(test_error)

            batch_theta = torch.nn.Parameter(batch_theta)
            scheduler = ADAMScheduler([batch_theta], **params)

            log('[Detection] %d: start' % b)
            for t in range(100):
                scheduler.update(t//10, float(t)/10)
                scheduler.optimizer.zero_grad()
                output_perturbation = self.model.forward(batch_theta)
                error = torch.mean(torch.mul(output_perturbation - batch_perturbation, output_perturbation - batch_perturbation))
                test_error = torch.mean(torch.mul(output_perturbation - batch_images, output_perturbation - batch_images))
                #error.backward()
                #scheduler.optimizer.step()

                log('[Detection] %d: %d = %g, %g' % (b, t, error.item(), test_error.item()))

                output_perturbation = numpy.squeeze(numpy.transpose(output_perturbation.cpu().detach().numpy(), (0, 2, 3, 1)))
            self.projected_perturbations = common.numpy.concatenate(self.projected_perturbations, output_perturbation)

        projected_perturbations = self.projected_perturbations.reshape((self.projected_perturbations.shape[0], -1))
        perturbations = self.perturbations.reshape((self.perturbations.shape[0], -1))

        success = numpy.logical_and(self.success >= 0, self.accuracy)
        log('[Detection] %d valid attacked samples' % numpy.sum(success))

        self.distances['true'] = numpy.linalg.norm(perturbations - projected_perturbations, ord=2, axis=1)
        self.angles['true'] = numpy.rad2deg(common.numpy.angles(perturbations.T, projected_perturbations.T))

        self.distances['true'] = self.distances['true'][success]
        self.angles['true'] = self.angles['true'][success]

        self.distances['test'] = numpy.zeros((numpy.sum(success)))
        self.angles['test'] = numpy.zeros((numpy.sum(success)))