Exemple #1
0
class PathPlanner():
    def __init__(self, CP):
        self.LP = LanePlanner()

        self.last_cloudlog_t = 0
        self.steer_rate_cost = CP.steerRateCost
        self.steerRatio = CP.steerRatio

        self.setup_mpc()
        self.solution_invalid_cnt = 0

        self.steerRatio_last = 0

        self.params = Params()

        # Lane change
        self.lane_change_enabled = self.params.get('LaneChangeEnabled') == b'1'
        self.lane_change_auto_delay = self.params.get_OpkrAutoLanechangedelay(
        )  #int( self.params.get('OpkrAutoLanechangedelay') )

        self.lane_change_state = LaneChangeState.off
        self.lane_change_direction = LaneChangeDirection.none
        self.lane_change_run_timer = 0.0
        self.lane_change_wait_timer = 0.0
        self.lane_change_ll_prob = 1.0
        self.prev_one_blinker = False

        # atom
        self.trPATH = trace1.Loger("path")
        self.trLearner = trace1.Loger("Learner")
        self.trpathPlan = trace1.Loger("pathPlan")

        self.atom_timer_cnt = 0
        self.atom_steer_ratio = None
        self.atom_sr_boost_bp = [0., 0.]
        self.atom_sr_boost_range = [0., 0.]

        self.carParams_valid = False

        self.m_avg = ma.MoveAvg()

    def limit_ctrl(self, value, limit, offset):
        p_limit = offset + limit
        m_limit = offset - limit
        if value > p_limit:
            value = p_limit
        elif value < m_limit:
            value = m_limit
        return value

    def limit_ctrl1(self, value, limit1, limit2, offset):
        p_limit = offset + limit1
        m_limit = offset - limit2
        if value > p_limit:
            value = p_limit
        elif value < m_limit:
            value = m_limit
        return value

    def setup_mpc(self):
        self.libmpc = libmpc_py.libmpc
        self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE,
                         MPC_COST_LAT.HEADING, self.steer_rate_cost)

        self.mpc_solution = libmpc_py.ffi.new("log_t *")
        self.cur_state = libmpc_py.ffi.new("state_t *")
        self.cur_state[0].x = 0.0
        self.cur_state[0].y = 0.0
        self.cur_state[0].psi = 0.0
        self.cur_state[0].delta = 0.0

        self.angle_steers_des = 0.0
        self.angle_steers_des_mpc = 0.0
        self.angle_steers_des_prev = 0.0
        self.angle_steers_des_time = 0.0

    def atom_tune(self, v_ego_kph, sr_value, atomTuning):  # 조향각에 따른 변화.
        self.sr_KPH = atomTuning.sRKPH
        self.sr_BPV = atomTuning.sRBPV
        self.sr_steerRatioV = atomTuning.sRsteerRatioV
        self.sr_SteerRatio = []

        nPos = 0
        for steerRatio in self.sr_BPV:  # steerRatio
            self.sr_SteerRatio.append(
                interp(sr_value, steerRatio, self.sr_steerRatioV[nPos]))
            nPos += 1
            if nPos > 20:
                break

        steerRatio = interp(v_ego_kph, self.sr_KPH, self.sr_SteerRatio)

        return steerRatio

    def atom_actuatorDelay(self, v_ego_kph, sr_value, atomTuning):
        self.sr_KPH = atomTuning.sRKPH
        self.sr_BPV = atomTuning.sRBPV
        self.sr_ActuatorDelayV = atomTuning.sRsteerActuatorDelayV
        self.sr_ActuatorDelay = []

        nPos = 0
        for steerRatio in self.sr_BPV:
            self.sr_ActuatorDelay.append(
                interp(sr_value, steerRatio, self.sr_ActuatorDelayV[nPos]))
            nPos += 1
            if nPos > 10:
                break

        actuatorDelay = interp(v_ego_kph, self.sr_KPH, self.sr_ActuatorDelay)

        return actuatorDelay

    def atom_steer(self, sr_value, sr_up, sr_dn):
        delta = sr_value - self.steerRatio_last

        sr_up = min(abs(delta), sr_up)
        sr_dn = min(abs(delta), sr_dn)
        steerRatio = self.steerRatio_last
        if delta > 0:
            steerRatio += sr_up
        elif delta < 0:
            steerRatio -= sr_dn

        self.steerRatio_last = steerRatio
        return steerRatio

    def update(self, sm, pm, CP, VM):
        self.atom_timer_cnt += 1
        if self.atom_timer_cnt > 1000:
            self.atom_timer_cnt = 0

        cruiseState = sm['carState'].cruiseState
        leftBlindspot = sm['carState'].leftBlindspot
        rightBlindspot = sm['carState'].rightBlindspot

        lateralsRatom = CP.lateralsRatom
        atomTuning = CP.atomTuning

        #if atomTuning is None or lateralsRatom is None:
        #print('carparams={} steerRatio={}  carParams_valid={}'.format(sm.updated['carParams'], sm['carParams'].steerRatio, self.carParams_valid ) )

        if not self.carParams_valid and sm[
                'carParams'].steerRatio:  # sm.updated['carParams']:
            self.carParams_valid = True

        if self.carParams_valid:
            lateralsRatom = sm['carParams'].lateralsRatom
            atomTuning = sm['carParams'].atomTuning

        v_ego = sm['carState'].vEgo
        angle_steers = sm['carState'].steeringAngle
        steeringPressed = sm['carState'].steeringPressed
        steeringTorque = sm['carState'].steeringTorque
        active = sm['controlsState'].active
        model_sum = sm['controlsState'].modelSum

        v_ego_kph = v_ego * CV.MS_TO_KPH

        self.steerRatio = sm['liveParameters'].steerRatio
        angle_offset = sm['liveParameters'].angleOffset
        angleOffsetAverage = sm['liveParameters'].angleOffsetAverage
        stiffnessFactor = sm['liveParameters'].stiffnessFactor

        #if (self.atom_timer_cnt % 100) == 0:
        #  str_log3 = 'angleOffset={:.1f} angleOffsetAverage={:.3f} steerRatio={:.2f} stiffnessFactor={:.3f} '.format( angle_offset, angleOffsetAverage, self.steerRatio, stiffnessFactor )
        #  self.trLearner.add( 'LearnerParam {}  carParams={}'.format( str_log3, self.carParams_valid ) )

        if lateralsRatom.learnerParams:
            pass
        else:
            # atom
            if self.carParams_valid:
                self.steer_rate_cost = sm['carParams'].steerRateCost
                self.steerRatio = sm['carParams'].steerRatio
            else:
                self.steer_rate_cost = CP.steerRateCost
                self.steerRatio = CP.steerRatio

            #xp = [-5,0,5]
            #fp = [0.4, 0.7, 0.4]
            #self.steer_rate_cost = interp( angle_steers, xp, fp )
            steerRatio = self.atom_tune(v_ego_kph, angle_steers, atomTuning)
            self.steerRatio = self.atom_steer(steerRatio, 2, 1)

        #actuatorDelay = CP.steerActuatorDelay
        steerActuatorDelay = self.atom_actuatorDelay(v_ego_kph, angle_steers,
                                                     atomTuning)

        # Run MPC
        self.angle_steers_des_prev = self.angle_steers_des_mpc
        VM.update_params(stiffnessFactor, self.steerRatio)
        curvature_factor = VM.curvature_factor(v_ego)

        self.LP.parse_model(sm['model'])

        # Lane change logic
        one_blinker = sm['carState'].leftBlinker != sm['carState'].rightBlinker
        below_lane_change_speed = v_ego < LANE_CHANGE_SPEED_MIN

        if sm['carState'].leftBlinker:
            self.lane_change_direction = LaneChangeDirection.left
        elif sm['carState'].rightBlinker:
            self.lane_change_direction = LaneChangeDirection.right

        if (not active) or (self.lane_change_run_timer >
                            LANE_CHANGE_TIME_MAX) or (not one_blinker) or (
                                not self.lane_change_enabled):
            self.lane_change_state = LaneChangeState.off
            self.lane_change_direction = LaneChangeDirection.none
        else:
            l_poly = self.LP.l_poly[3]
            r_poly = self.LP.r_poly[3]
            c_prob = l_poly + r_poly
            torque_applied = steeringPressed and \
                              ((steeringTorque > 0 and self.lane_change_direction == LaneChangeDirection.left) or \
                                (steeringTorque < 0 and self.lane_change_direction == LaneChangeDirection.right))

            blindspot_detected = (
                (leftBlindspot
                 and self.lane_change_direction == LaneChangeDirection.left) or
                (rightBlindspot
                 and self.lane_change_direction == LaneChangeDirection.right))

            lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob

            # State transitions
            # off
            if cruiseState.cruiseSwState == Buttons.CANCEL:
                self.lane_change_state = LaneChangeState.off
                self.lane_change_ll_prob = 1.0
                self.lane_change_wait_timer = 0

            elif self.lane_change_state == LaneChangeState.off and one_blinker and not self.prev_one_blinker and not below_lane_change_speed:
                self.lane_change_state = LaneChangeState.preLaneChange
                self.lane_change_ll_prob = 1.0
                self.lane_change_wait_timer = 0

            # pre
            elif self.lane_change_state == LaneChangeState.preLaneChange:
                self.lane_change_wait_timer += DT_MDL

                if not one_blinker or below_lane_change_speed:
                    self.lane_change_state = LaneChangeState.off
                elif not blindspot_detected and (
                        torque_applied or (self.lane_change_auto_delay
                                           and self.lane_change_wait_timer >
                                           self.lane_change_auto_delay)):
                    self.lane_change_state = LaneChangeState.laneChangeStarting

            # starting
            elif self.lane_change_state == LaneChangeState.laneChangeStarting:
                # fade out over .5s
                xp = [40, 50, 60, 70]
                fp2 = [0.2, 0.6, 1.2, 1.5]
                lane_time = interp(v_ego_kph, xp, fp2)
                self.lane_change_ll_prob = max(
                    self.lane_change_ll_prob - lane_time * DT_MDL, 0.0)
                # 98% certainty
                if lane_change_prob < 0.02 and self.lane_change_ll_prob < 0.01:
                    self.lane_change_state = LaneChangeState.laneChangeFinishing

            # finishing
            elif self.lane_change_state == LaneChangeState.laneChangeFinishing:
                # fade in laneline over 1s
                self.lane_change_ll_prob = min(
                    self.lane_change_ll_prob + DT_MDL, 1.0)
                if self.lane_change_ll_prob > 0.99 and abs(c_prob) < 0.3:
                    self.lane_change_state = LaneChangeState.laneChangeDone

            # done
            elif self.lane_change_state == LaneChangeState.laneChangeDone:
                if not one_blinker:
                    self.lane_change_state = LaneChangeState.off

        if self.lane_change_state in [
                LaneChangeState.off, LaneChangeState.preLaneChange
        ]:
            self.lane_change_run_timer = 0.0
        else:
            self.lane_change_run_timer += DT_MDL

        self.prev_one_blinker = one_blinker

        desire = DESIRES[self.lane_change_direction][self.lane_change_state]

        # Turn off lanes during lane change
        if desire == log.PathPlan.Desire.laneChangeRight or desire == log.PathPlan.Desire.laneChangeLeft:
            self.LP.l_prob *= self.lane_change_ll_prob
            self.LP.r_prob *= self.lane_change_ll_prob
        self.LP.update_d_poly(v_ego, lateralsRatom.cameraOffset)

        # account for actuation delay
        self.cur_state = calc_states_after_delay(self.cur_state, v_ego,
                                                 angle_steers - angle_offset,
                                                 curvature_factor, VM.sR,
                                                 steerActuatorDelay)

        v_ego_mpc = max(v_ego, 5.0)  # avoid mpc roughness due to low speed
        self.libmpc.run_mpc(self.cur_state, self.mpc_solution,
                            list(self.LP.l_poly), list(self.LP.r_poly),
                            list(self.LP.d_poly), self.LP.l_prob,
                            self.LP.r_prob, curvature_factor, v_ego_mpc,
                            self.LP.lane_width)

        # reset to current steer angle if not active or overriding
        if active:
            delta_desired = self.mpc_solution[0].delta[1]
            rate_desired = math.degrees(self.mpc_solution[0].rate[0] * VM.sR)
        else:
            delta_desired = math.radians(angle_steers - angle_offset) / VM.sR
            rate_desired = 0.0

        self.cur_state[0].delta = delta_desired

        self.angle_steers_des_mpc = float(
            math.degrees(delta_desired * VM.sR) + angle_offset)
        org_angle_steers_des = self.angle_steers_des_mpc

        # atom
        if steeringPressed:
            delta_steer = org_angle_steers_des - angle_steers
            xp = [-255, 0, 255]
            fp2 = [5, 0, 5]
            limit_steers = interp(steeringTorque, xp, fp2)
            if steeringTorque < 0:  # right
                if delta_steer > 0:
                    self.angle_steers_des_mpc = self.limit_ctrl(
                        org_angle_steers_des, limit_steers, angle_steers)
            elif steeringTorque > 0:  # left
                if delta_steer < 0:
                    self.angle_steers_des_mpc = self.limit_ctrl(
                        org_angle_steers_des, limit_steers, angle_steers)

        elif v_ego_kph < 15:  # 30
            xp = [3, 10, 15]
            fp2 = [3, 5, 7]
            limit_steers = interp(v_ego_kph, xp, fp2)
            self.angle_steers_des_mpc = self.limit_ctrl(
                org_angle_steers_des, limit_steers, angle_steers)
        elif v_ego_kph > 60:
            pass
        elif abs(angle_steers) > 10:  # angle steer > 10
            # 2.
            xp = [-10, -5, 0, 5, 10]  # 5  10=>28 15=>35, 30=>52
            fp1 = [3, 8, 10, 20, 10]  # +
            fp2 = [10, 20, 10, 8, 3]  # -
            limit_steers1 = interp(model_sum, xp, fp1)  # +
            limit_steers2 = interp(model_sum, xp, fp2)  # -
            self.angle_steers_des_mpc = self.limit_ctrl1(
                org_angle_steers_des, limit_steers1, limit_steers2,
                angle_steers)

        delta_steer = self.angle_steers_des_mpc - angle_steers
        ANGLE_LIMIT = 8
        if delta_steer > ANGLE_LIMIT:
            p_angle_steers = angle_steers + ANGLE_LIMIT
            self.angle_steers_des_mpc = p_angle_steers
        elif delta_steer < -ANGLE_LIMIT:
            m_angle_steers = angle_steers - ANGLE_LIMIT
            self.angle_steers_des_mpc = m_angle_steers

        #  Check for infeasable MPC solution
        mpc_nans = any(math.isnan(x) for x in self.mpc_solution[0].delta)
        t = sec_since_boot()
        if mpc_nans:
            self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE,
                             MPC_COST_LAT.HEADING, self.steer_rate_cost)
            self.cur_state[0].delta = math.radians(angle_steers -
                                                   angle_offset) / VM.sR

            if t > self.last_cloudlog_t + 5.0:
                self.last_cloudlog_t = t
                cloudlog.warning("Lateral mpc - nan: True")

        #self.trPATH.add( 'mpc_nans ={}  libmpc  steer_rate_cost={}  delta={}   angle_steers={}'.format( mpc_nans, self.steer_rate_cost, self.cur_state[0].delta, angle_steers ) )

        if self.mpc_solution[
                0].cost > 20000. or mpc_nans:  # TODO: find a better way to detect when MPC did not converge
            self.solution_invalid_cnt += 1
        else:
            self.solution_invalid_cnt = 0
        plan_solution_valid = self.solution_invalid_cnt < 3

        plan_send = messaging.new_message('pathPlan')
        plan_send.valid = sm.all_alive_and_valid(service_list=[
            'carState', 'controlsState', 'liveParameters', 'model'
        ])
        plan_send.pathPlan.laneWidth = float(self.LP.lane_width)
        plan_send.pathPlan.dPoly = [float(x) for x in self.LP.d_poly]
        plan_send.pathPlan.lPoly = [float(x) for x in self.LP.l_poly]
        plan_send.pathPlan.lProb = float(self.LP.l_prob)
        plan_send.pathPlan.rPoly = [float(x) for x in self.LP.r_poly]
        plan_send.pathPlan.rProb = float(self.LP.r_prob)

        plan_send.pathPlan.angleSteers = float(self.angle_steers_des_mpc)
        plan_send.pathPlan.rateSteers = float(rate_desired)
        plan_send.pathPlan.angleOffset = float(angleOffsetAverage)
        plan_send.pathPlan.mpcSolutionValid = bool(plan_solution_valid)
        plan_send.pathPlan.paramsValid = bool(sm['liveParameters'].valid)

        plan_send.pathPlan.desire = desire
        plan_send.pathPlan.laneChangeState = self.lane_change_state
        plan_send.pathPlan.laneChangeDirection = self.lane_change_direction
        plan_send.pathPlan.steerRatio = self.steerRatio
        plan_send.pathPlan.steerActuatorDelay = steerActuatorDelay
        pm.send('pathPlan', plan_send)

        #if self.solution_invalid_cnt > 0:
        #  str_log3 = 'v_ego_kph={:.1f} angle_steers_des_mpc={:.1f} angle_steers={:.1f} solution_invalid_cnt={:.0f} mpc_solution={:.1f}/{:.0f}'.format( v_ego_kph, self.angle_steers_des_mpc, angle_steers, self.solution_invalid_cnt, self.mpc_solution[0].cost, mpc_nans )
        #  self.trpathPlan.add( 'pathPlan {}  LOG_MPC={}'.format( str_log3, LOG_MPC ) )

        if LOG_MPC:
            dat = messaging.new_message('liveMpc')
            dat.liveMpc.x = list(self.mpc_solution[0].x)
            dat.liveMpc.y = list(self.mpc_solution[0].y)
            dat.liveMpc.psi = list(self.mpc_solution[0].psi)
            dat.liveMpc.delta = list(self.mpc_solution[0].delta)
            dat.liveMpc.cost = self.mpc_solution[0].cost
            pm.send('liveMpc', dat)
Exemple #2
0
class PathPlanner():
    def __init__(self, CP):
        self.LP = LanePlanner()

        self.last_cloudlog_t = 0
        self.steer_rate_cost = CP.steerRateCost
        self.steerRatio = CP.steerRatio

        self.setup_mpc()
        self.solution_invalid_cnt = 0

        self.params = Params()

        # Lane change
        self.lane_change_enabled = self.params.get('LaneChangeEnabled') == b'1'
        self.lane_change_auto_delay = self.params.get_OpkrAutoLanechangedelay(
        )  #int( self.params.get('OpkrAutoLanechangedelay') )

        self.lane_change_state = LaneChangeState.off
        self.lane_change_direction = LaneChangeDirection.none
        self.lane_change_run_timer = 0.0
        self.lane_change_wait_timer = 0.0
        self.lane_change_ll_prob = 1.0
        self.prev_one_blinker = False

        # atom
        self.trPATH = trace1.Loger("path")
        self.trLearner = trace1.Loger("Learner")
        self.trpathPlan = trace1.Loger("pathPlan")

        self.atom_timer_cnt = 0
        self.atom_steer_ratio = None
        self.atom_sr_boost_bp = [0., 0.]
        self.atom_sr_boost_range = [0., 0.]

    def limit_ctrl(self, value, limit, offset):
        p_limit = offset + limit
        m_limit = offset - limit
        if value > p_limit:
            value = p_limit
        elif value < m_limit:
            value = m_limit
        return value

    def setup_mpc(self):
        self.libmpc = libmpc_py.libmpc
        self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE,
                         MPC_COST_LAT.HEADING, self.steer_rate_cost)

        self.mpc_solution = libmpc_py.ffi.new("log_t *")
        self.cur_state = libmpc_py.ffi.new("state_t *")
        self.cur_state[0].x = 0.0
        self.cur_state[0].y = 0.0
        self.cur_state[0].psi = 0.0
        self.cur_state[0].delta = 0.0

        self.angle_steers_des = 0.0
        self.angle_steers_des_mpc = 0.0
        self.angle_steers_des_prev = 0.0
        self.angle_steers_des_time = 0.0

    def update(self, sm, pm, CP, VM):
        self.atom_timer_cnt += 1
        if self.atom_timer_cnt > 1000:
            self.atom_timer_cnt = 0

        leftBlindspot = sm['carState'].leftBlindspot
        rightBlindspot = sm['carState'].rightBlindspot

        v_ego = sm['carState'].vEgo
        angle_steers = sm['carState'].steeringAngle
        steeringPressed = sm['carState'].steeringPressed
        steeringTorque = sm['carState'].steeringTorque
        active = sm['controlsState'].active
        v_ego_kph = v_ego * CV.MS_TO_KPH

        self.steerRatio = sm['liveParameters'].steerRatio
        angle_offset = sm['liveParameters'].angleOffset
        angleOffsetAverage = sm['liveParameters'].angleOffsetAverage
        stiffnessFactor = sm['liveParameters'].stiffnessFactor

        if (self.atom_timer_cnt % 100) == 0:
            str_log3 = 'angleOffset={:.1f} angleOffsetAverage={:.3f} steerRatio={:.2f} stiffnessFactor={:.3f} '.format(
                angle_offset, angleOffsetAverage, self.steerRatio,
                stiffnessFactor)
            self.trLearner.add('LearnerParam {}'.format(str_log3))

        if CP.lateralsRatom.learnerParams:
            pass
        else:
            #angle_offset = 0
            #angleOffsetAverage = 0

            # atom
            self.steer_rate_cost = sm['carParams'].steerRateCost
            self.steerRatio = sm['carParams'].steerRatio
            if self.steer_rate_cost == 0:
                self.steer_rate_cost = CP.steerRateCost

            if self.steerRatio == 0:
                self.steerRatio = CP.steerRatio

            self.steerRatio = interp(angle_steers, CP.atomTuning.sRBPV,
                                     CP.atomTuning.sRsteerRatioV)

            str_log1 = 'steerRatio={:.1f}/{:.1f} bp={} range={}'.format(
                self.steerRatio, CP.steerRatio, CP.atomTuning.sRBPV,
                CP.atomTuning.sRsteerRatioV)
            str_log2 = 'steerRateCost={:.2f}'.format(self.steer_rate_cost)
            self.trPATH.add('{} {}'.format(str_log1, str_log2))

        # Run MPC
        self.angle_steers_des_prev = self.angle_steers_des_mpc
        VM.update_params(stiffnessFactor,
                         self.steerRatio)  # sm['liveParameters'].steerRatio)
        curvature_factor = VM.curvature_factor(v_ego)

        self.LP.parse_model(sm['model'])

        # Lane change logic
        one_blinker = sm['carState'].leftBlinker != sm['carState'].rightBlinker
        below_lane_change_speed = v_ego < LANE_CHANGE_SPEED_MIN

        if sm['carState'].leftBlinker:
            self.lane_change_direction = LaneChangeDirection.left
        elif sm['carState'].rightBlinker:
            self.lane_change_direction = LaneChangeDirection.right

        if (not active) or (self.lane_change_run_timer >
                            LANE_CHANGE_TIME_MAX) or (not one_blinker) or (
                                not self.lane_change_enabled):
            self.lane_change_state = LaneChangeState.off
            self.lane_change_direction = LaneChangeDirection.none
        else:
            torque_applied = steeringPressed and \
                              ((steeringTorque > 0 and self.lane_change_direction == LaneChangeDirection.left) or \
                                (steeringTorque < 0 and self.lane_change_direction == LaneChangeDirection.right))

            blindspot_detected = (
                (sm['carState'].leftBlindspot
                 and self.lane_change_direction == LaneChangeDirection.left) or
                (sm['carState'].rightBlindspot
                 and self.lane_change_direction == LaneChangeDirection.right))

            lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob

            # State transitions
            # off
            if self.lane_change_state == LaneChangeState.off and one_blinker and not self.prev_one_blinker and not below_lane_change_speed:
                self.lane_change_state = LaneChangeState.preLaneChange
                self.lane_change_ll_prob = 1.0
                self.lane_change_wait_timer = 0

            # pre
            elif self.lane_change_state == LaneChangeState.preLaneChange:
                self.lane_change_wait_timer += DT_MDL

                if not one_blinker or below_lane_change_speed:
                    self.lane_change_state = LaneChangeState.off
                elif not blindspot_detected and (
                        torque_applied or (self.lane_change_auto_delay
                                           and self.lane_change_wait_timer >
                                           self.lane_change_auto_delay)):
                    self.lane_change_state = LaneChangeState.laneChangeStarting

            # starting
            elif self.lane_change_state == LaneChangeState.laneChangeStarting:
                # fade out over .5s
                self.lane_change_ll_prob = max(
                    self.lane_change_ll_prob - 1.5 * DT_MDL, 0.0)
                # 98% certainty
                if lane_change_prob < 0.02 and self.lane_change_ll_prob < 0.01:
                    self.lane_change_state = LaneChangeState.laneChangeFinishing

            # finishing
            elif self.lane_change_state == LaneChangeState.laneChangeFinishing:
                # fade in laneline over 1s
                self.lane_change_ll_prob = min(
                    self.lane_change_ll_prob + DT_MDL, 1.0)
                if self.lane_change_ll_prob > 0.99:
                    self.lane_change_state = LaneChangeState.laneChangeDone

            # done
            elif self.lane_change_state == LaneChangeState.laneChangeDone:
                if not one_blinker:
                    self.lane_change_state = LaneChangeState.off

        if self.lane_change_state in [
                LaneChangeState.off, LaneChangeState.preLaneChange
        ]:
            self.lane_change_run_timer = 0.0
        else:
            self.lane_change_run_timer += DT_MDL

        self.prev_one_blinker = one_blinker

        desire = DESIRES[self.lane_change_direction][self.lane_change_state]

        # Turn off lanes during lane change
        if desire == log.PathPlan.Desire.laneChangeRight or desire == log.PathPlan.Desire.laneChangeLeft:
            self.LP.l_prob *= self.lane_change_ll_prob
            self.LP.r_prob *= self.lane_change_ll_prob
        self.LP.update_d_poly(v_ego)

        # account for actuation delay
        self.cur_state = calc_states_after_delay(self.cur_state, v_ego,
                                                 angle_steers - angle_offset,
                                                 curvature_factor, VM.sR,
                                                 CP.steerActuatorDelay)

        v_ego_mpc = max(v_ego, 5.0)  # avoid mpc roughness due to low speed
        self.libmpc.run_mpc(self.cur_state, self.mpc_solution,
                            list(self.LP.l_poly), list(self.LP.r_poly),
                            list(self.LP.d_poly), self.LP.l_prob,
                            self.LP.r_prob, curvature_factor, v_ego_mpc,
                            self.LP.lane_width)

        # reset to current steer angle if not active or overriding
        if active:
            delta_desired = self.mpc_solution[0].delta[1]
            rate_desired = math.degrees(self.mpc_solution[0].rate[0] * VM.sR)
        else:
            delta_desired = math.radians(angle_steers - angle_offset) / VM.sR
            rate_desired = 0.0

        self.cur_state[0].delta = delta_desired

        self.angle_steers_des_mpc = float(
            math.degrees(delta_desired * VM.sR) + angle_offset)
        org_angle_steers_des = self.angle_steers_des_mpc

        # atom
        if steeringPressed:
            delta_steer = self.angle_steers_des_mpc - angle_steers
            xp = [-255, 0, 255]
            fp2 = [5, 0, 5]
            limit_steers = interp(steeringTorque, xp, fp2)
            if steeringTorque < 0:  # right
                if delta_steer > 0:
                    self.angle_steers_des_mpc = self.limit_ctrl(
                        org_angle_steers_des, limit_steers, angle_steers)
            elif steeringTorque > 0:  # left
                if delta_steer < 0:
                    self.angle_steers_des_mpc = self.limit_ctrl(
                        org_angle_steers_des, limit_steers, angle_steers)

        elif v_ego_kph < 30:
            xp = [5, 15, 30]
            fp2 = [3, 5, 9]
            limit_steers = interp(v_ego_kph, xp, fp2)
            self.angle_steers_des_mpc = self.limit_ctrl(
                org_angle_steers_des, limit_steers, angle_steers)

        #  Check for infeasable MPC solution
        mpc_nans = any(math.isnan(x) for x in self.mpc_solution[0].delta)
        t = sec_since_boot()
        if mpc_nans:
            self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE,
                             MPC_COST_LAT.HEADING, self.steer_rate_cost)
            self.cur_state[0].delta = math.radians(angle_steers -
                                                   angle_offset) / VM.sR

            if t > self.last_cloudlog_t + 5.0:
                self.last_cloudlog_t = t
                cloudlog.warning("Lateral mpc - nan: True")

        if self.mpc_solution[
                0].cost > 20000. or mpc_nans:  # TODO: find a better way to detect when MPC did not converge
            self.solution_invalid_cnt += 1
        else:
            self.solution_invalid_cnt = 0
        plan_solution_valid = self.solution_invalid_cnt < 3

        plan_send = messaging.new_message('pathPlan')
        plan_send.valid = sm.all_alive_and_valid(service_list=[
            'carState', 'controlsState', 'liveParameters', 'model'
        ])
        plan_send.pathPlan.laneWidth = float(self.LP.lane_width)
        plan_send.pathPlan.dPoly = [float(x) for x in self.LP.d_poly]
        plan_send.pathPlan.lPoly = [float(x) for x in self.LP.l_poly]
        plan_send.pathPlan.lProb = float(self.LP.l_prob)
        plan_send.pathPlan.rPoly = [float(x) for x in self.LP.r_poly]
        plan_send.pathPlan.rProb = float(self.LP.r_prob)

        plan_send.pathPlan.angleSteers = float(self.angle_steers_des_mpc)
        plan_send.pathPlan.rateSteers = float(rate_desired)
        plan_send.pathPlan.angleOffset = float(angleOffsetAverage)
        plan_send.pathPlan.mpcSolutionValid = bool(plan_solution_valid)
        plan_send.pathPlan.paramsValid = bool(sm['liveParameters'].valid)

        plan_send.pathPlan.desire = desire
        plan_send.pathPlan.laneChangeState = self.lane_change_state
        plan_send.pathPlan.laneChangeDirection = self.lane_change_direction
        pm.send('pathPlan', plan_send)

        if self.solution_invalid_cnt > 0:
            str_log3 = 'v_ego_kph={:.1f} angle_steers_des_mpc={:.1f} angle_steers={:.1f} solution_invalid_cnt={:.0f} mpc_solution={:.1f}/{:.0f}'.format(
                v_ego_kph, self.angle_steers_des_mpc, angle_steers,
                self.solution_invalid_cnt, self.mpc_solution[0].cost, mpc_nans)
            self.trpathPlan.add('pathPlan {}'.format(str_log3))

        if LOG_MPC:
            dat = messaging.new_message('liveMpc')
            dat.liveMpc.x = list(self.mpc_solution[0].x)
            dat.liveMpc.y = list(self.mpc_solution[0].y)
            dat.liveMpc.psi = list(self.mpc_solution[0].psi)
            dat.liveMpc.delta = list(self.mpc_solution[0].delta)
            dat.liveMpc.cost = self.mpc_solution[0].cost
            pm.send('liveMpc', dat)
Exemple #3
0
class PathPlanner():
    def __init__(self, CP):
        self.LP = LanePlanner()

        self.last_cloudlog_t = 0
        self.steer_rate_cost = CP.steerRateCost
        self.setup_mpc()
        self.solution_invalid_cnt = 0

        self.params = Params()
        kyd = kyd_conf(CP)
        if kyd.conf['steerRatio'] == "-1":
            self.steerRatio = CP.steerRatio
        else:
            self.steerRatio = float(kyd.conf['steerRatio'])

        if kyd.conf['steerRateCost'] == "-1":
            self.steer_rate_cost = CP.steerRateCost
        else:
            self.steer_rate_cost = float(kyd.conf['steerRateCost'])

        self.kyd_steerRatio = None
        self.sRBP = [0., 0.]
        self.sRBoost = [0., 0.]

        # Lane change
        self.lane_change_enabled = self.params.get('LaneChangeEnabled') == b'1'
        self.lane_change_auto_delay = self.params.get_OpkrAutoLanechangedelay(
        )  #int( self.params.get('OpkrAutoLanechangedelay') )

        self.lane_change_state = LaneChangeState.off
        self.lane_change_direction = LaneChangeDirection.none
        self.lane_change_run_timer = 0.0
        self.lane_change_wait_timer = 0.0
        self.lane_change_ll_prob = 1.0
        self.prev_one_blinker = False

        self.param_OpkrEnableLearner = int(
            self.params.get('OpkrEnableLearner'))

    def setup_mpc(self):
        self.libmpc = libmpc_py.libmpc
        self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE,
                         MPC_COST_LAT.HEADING, self.steer_rate_cost)

        self.mpc_solution = libmpc_py.ffi.new("log_t *")
        self.cur_state = libmpc_py.ffi.new("state_t *")
        self.cur_state[0].x = 0.0
        self.cur_state[0].y = 0.0
        self.cur_state[0].psi = 0.0
        self.cur_state[0].delta = 0.0

        self.angle_steers_des = 0.0
        self.angle_steers_des_mpc = 0.0
        self.angle_steers_des_prev = 0.0
        self.angle_steers_des_time = 0.0

    def update(self, sm, pm, CP, VM):

        v_ego = sm['carState'].vEgo
        angle_steers = sm['carState'].steeringAngle
        active = sm['controlsState'].active

        angle_offset = sm['liveParameters'].angleOffset

        if not self.param_OpkrEnableLearner:
            kyd = kyd_conf()
            #self.steer_rate_cost = float(kyd.conf['steerRateCost'])
            self.sRBP = kyd.conf['sR_BP']
            self.sRBoost = kyd.conf['sR_Boost']
            boost_rate = interp(abs(angle_steers), self.sRBP, self.sRBoost)
            self.kyd_steerRatio = self.steerRatio + boost_rate

            self.sR_Cost = [
                1.0, 0.90, 0.81, 0.73, 0.66, 0.60, 0.54, 0.48, 0.36, 0.275,
                0.20, 0.175, 0.15, 0.11, 0.05
            ]
            #self.sR_Cost = [0.75,0.67,0.60,0.54,0.48,0.425,0.37,0.32,0.24,0.19,0.15,0.14,0.13,0.11,0.05]
            #self.sR_Cost = [0.50,0.46,0.425,0.395,0.37,0.34,0.315,0.29,0.23,0.185,0.15,0.14,0.13,0.11,0.05]
            #steerRatio = 10.0
            #"sR_BP": [0.0,2.0,4.0,6.0,8.0,10.0,12.0,14.0,20.0,27.0,35.0,40.0,45.0,60.0,100],
            #"sR_Boost": [0.0,0.7,1.3,1.9,2.5,3.05,3.55,4.0,5.0,5.7,6.2,6.35,6.4,6.5,8.0],
            self.steer_rate_cost = interp(abs(angle_steers), self.sRBP,
                                          self.sR_Cost)

        # Run MPC
        self.angle_steers_des_prev = self.angle_steers_des_mpc

        # Update vehicle model
        x = max(sm['liveParameters'].stiffnessFactor, 0.1)
        sr = max(sm['liveParameters'].steerRatio, 0.1)
        VM.update_params(x, sr)

        curvature_factor = VM.curvature_factor(v_ego)

        self.LP.parse_model(sm['model'])

        # Lane change logic
        one_blinker = sm['carState'].leftBlinker != sm['carState'].rightBlinker
        below_lane_change_speed = v_ego < LANE_CHANGE_SPEED_MIN

        if sm['carState'].leftBlinker:
            self.lane_change_direction = LaneChangeDirection.left
        elif sm['carState'].rightBlinker:
            self.lane_change_direction = LaneChangeDirection.right

        if (not active) or (self.lane_change_run_timer >
                            LANE_CHANGE_TIME_MAX) or (not one_blinker) or (
                                not self.lane_change_enabled):
            self.lane_change_state = LaneChangeState.off
            self.lane_change_direction = LaneChangeDirection.none
        else:
            torque_applied = sm['carState'].steeringPressed and \
                             ((sm['carState'].steeringTorque > 0 and self.lane_change_direction == LaneChangeDirection.left) or
                              (sm['carState'].steeringTorque < 0 and self.lane_change_direction == LaneChangeDirection.right))

            blindspot_detected = (
                (sm['carState'].leftBlindspot
                 and self.lane_change_direction == LaneChangeDirection.left) or
                (sm['carState'].rightBlindspot
                 and self.lane_change_direction == LaneChangeDirection.right))

            lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob

            # State transitions
            # off
            if self.lane_change_state == LaneChangeState.off and one_blinker and not self.prev_one_blinker and not below_lane_change_speed:
                self.lane_change_state = LaneChangeState.preLaneChange
                self.lane_change_ll_prob = 1.0
                self.lane_change_wait_timer = 0

            # pre
            elif self.lane_change_state == LaneChangeState.preLaneChange:
                self.lane_change_wait_timer += DT_MDL

                if not one_blinker or below_lane_change_speed:
                    self.lane_change_state = LaneChangeState.off
                elif not blindspot_detected and (
                        torque_applied or (self.lane_change_auto_delay
                                           and self.lane_change_wait_timer >
                                           self.lane_change_auto_delay)):
                    self.lane_change_state = LaneChangeState.laneChangeStarting

            # starting
            elif self.lane_change_state == LaneChangeState.laneChangeStarting:
                # fade out over .5s
                self.lane_change_ll_prob = max(
                    self.lane_change_ll_prob - 1.5 * DT_MDL, 0.0)
                # 98% certainty
                if lane_change_prob < 0.02 and self.lane_change_ll_prob < 0.01:
                    self.lane_change_state = LaneChangeState.laneChangeFinishing

            # finishing
            elif self.lane_change_state == LaneChangeState.laneChangeFinishing:
                # fade in laneline over 1s
                self.lane_change_ll_prob = min(
                    self.lane_change_ll_prob + DT_MDL, 1.0)
                if one_blinker and self.lane_change_ll_prob > 0.99:
                    self.lane_change_state = LaneChangeState.laneChangeDone

            # done
            elif self.lane_change_state == LaneChangeState.laneChangeDone:
                if not one_blinker:
                    self.lane_change_state = LaneChangeState.off

        if self.lane_change_state in [
                LaneChangeState.off, LaneChangeState.preLaneChange
        ]:
            self.lane_change_run_timer = 0.0
        else:
            self.lane_change_run_timer += DT_MDL

        self.prev_one_blinker = one_blinker

        desire = DESIRES[self.lane_change_direction][self.lane_change_state]

        # Turn off lanes during lane change
        if desire == log.PathPlan.Desire.laneChangeRight or desire == log.PathPlan.Desire.laneChangeLeft:
            self.LP.l_prob *= self.lane_change_ll_prob
            self.LP.r_prob *= self.lane_change_ll_prob
        self.LP.update_d_poly(v_ego)

        # account for actuation delay
        if self.param_OpkrEnableLearner:
            self.cur_state = calc_states_after_delay(
                self.cur_state, v_ego, angle_steers - angle_offset,
                curvature_factor, VM.sR, CP.steerActuatorDelay)
        else:
            self.cur_state = calc_states_after_delay(
                self.cur_state, v_ego, angle_steers - angle_offset,
                curvature_factor, self.kyd_steerRatio, CP.steerActuatorDelay)

        v_ego_mpc = max(v_ego, 5.0)  # avoid mpc roughness due to low speed
        self.libmpc.run_mpc(self.cur_state, self.mpc_solution,
                            list(self.LP.l_poly), list(self.LP.r_poly),
                            list(self.LP.d_poly), self.LP.l_prob,
                            self.LP.r_prob, curvature_factor, v_ego_mpc,
                            self.LP.lane_width)

        # reset to current steer angle if not active or overriding
        if active:
            delta_desired = self.mpc_solution[0].delta[1]
            if self.param_OpkrEnableLearner:
                rate_desired = math.degrees(self.mpc_solution[0].rate[0] *
                                            VM.sR)
            else:
                rate_desired = math.degrees(self.mpc_solution[0].rate[0] *
                                            self.kyd_steerRatio)
        else:
            if self.param_OpkrEnableLearner:
                delta_desired = math.radians(angle_steers -
                                             angle_offset) / VM.sR
            else:
                delta_desired = math.radians(
                    angle_steers - angle_offset) / self.kyd_steerRatio
            rate_desired = 0.0

        self.cur_state[0].delta = delta_desired
        if self.param_OpkrEnableLearner:
            self.angle_steers_des_mpc = float(
                math.degrees(delta_desired * VM.sR) + angle_offset)
        else:
            self.angle_steers_des_mpc = float(
                math.degrees(delta_desired * self.kyd_steerRatio) +
                angle_offset)
        #  Check for infeasable MPC solution
        mpc_nans = any(math.isnan(x) for x in self.mpc_solution[0].delta)
        t = sec_since_boot()
        if mpc_nans:
            self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE,
                             MPC_COST_LAT.HEADING, self.steer_rate_cost)
            if self.param_OpkrEnableLearner:
                self.cur_state[0].delta = math.radians(angle_steers -
                                                       angle_offset) / VM.sR
            else:
                self.cur_state[0].delta = math.radians(
                    angle_steers - angle_offset) / self.kyd_steerRatio

            if t > self.last_cloudlog_t + 5.0:
                self.last_cloudlog_t = t
                cloudlog.warning("Lateral mpc - nan: True")

        if self.mpc_solution[
                0].cost > 20000. or mpc_nans:  # TODO: find a better way to detect when MPC did not converge
            self.solution_invalid_cnt += 1
        else:
            self.solution_invalid_cnt = 0
        plan_solution_valid = self.solution_invalid_cnt < 3

        plan_send = messaging.new_message('pathPlan')
        plan_send.valid = sm.all_alive_and_valid(service_list=[
            'carState', 'controlsState', 'liveParameters', 'model'
        ])
        plan_send.pathPlan.laneWidth = float(self.LP.lane_width)
        plan_send.pathPlan.dPoly = [float(x) for x in self.LP.d_poly]
        plan_send.pathPlan.lPoly = [float(x) for x in self.LP.l_poly]
        plan_send.pathPlan.lProb = float(self.LP.l_prob)
        plan_send.pathPlan.rPoly = [float(x) for x in self.LP.r_poly]
        plan_send.pathPlan.rProb = float(self.LP.r_prob)

        plan_send.pathPlan.angleSteers = float(self.angle_steers_des_mpc)
        plan_send.pathPlan.rateSteers = float(rate_desired)
        plan_send.pathPlan.angleOffset = float(
            sm['liveParameters'].angleOffsetAverage)
        plan_send.pathPlan.mpcSolutionValid = bool(plan_solution_valid)
        plan_send.pathPlan.paramsValid = bool(sm['liveParameters'].valid)

        plan_send.pathPlan.desire = desire
        plan_send.pathPlan.laneChangeState = self.lane_change_state
        plan_send.pathPlan.laneChangeDirection = self.lane_change_direction

        if not self.param_OpkrEnableLearner:
            plan_send.pathPlan.steerRatio = float(self.kyd_steerRatio)

        pm.send('pathPlan', plan_send)

        if LOG_MPC:
            dat = messaging.new_message('liveMpc')
            dat.liveMpc.x = list(self.mpc_solution[0].x)
            dat.liveMpc.y = list(self.mpc_solution[0].y)
            dat.liveMpc.psi = list(self.mpc_solution[0].psi)
            dat.liveMpc.delta = list(self.mpc_solution[0].delta)
            dat.liveMpc.cost = self.mpc_solution[0].cost
            pm.send('liveMpc', dat)
Exemple #4
0
class PathPlanner():
    def __init__(self, CP):
        self.PathPlan = trace1.Loger("077_R3_LQR_parhplan")

        self.LP = LanePlanner()

        self.last_cloudlog_t = 0
        self.steer_rate_cost = CP.steerRateCost

        self.setup_mpc()
        self.solution_invalid_cnt = 0

        self.params = Params()

        # Lane change
        self.lane_change_enabled = self.params.get('LaneChangeEnabled') == b'1'
        self.lane_change_auto_delay = self.params.get_OpkrAutoLanechangedelay()

        self.lane_change_state = LaneChangeState.off
        self.lane_change_direction = LaneChangeDirection.none
        self.lane_change_run_timer = 0.0
        self.lane_change_wait_timer = 0.0
        self.lane_change_ll_prob = 1.0
        self.prev_one_blinker = False

    def limit_ctrl(self, value, limit, offset):
        p_limit = offset + limit
        m_limit = offset - limit
        if value > p_limit:
            value = p_limit
        elif value < m_limit:
            value = m_limit
        return value

    def setup_mpc(self):
        self.libmpc = libmpc_py.libmpc
        self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE,
                         MPC_COST_LAT.HEADING, self.steer_rate_cost)

        self.mpc_solution = libmpc_py.ffi.new("log_t *")
        self.cur_state = libmpc_py.ffi.new("state_t *")
        self.cur_state[0].x = 0.0
        self.cur_state[0].y = 0.0
        self.cur_state[0].psi = 0.0
        self.cur_state[0].delta = 0.0

        self.angle_steers_des = 0.0
        self.angle_steers_des_mpc = 0.0
        self.angle_steers_des_prev = 0.0
        self.angle_steers_des_time = 0.0

    def update(self, sm, pm, CP, VM):
        v_ego = sm['carState'].vEgo
        v_ego_kph = v_ego * 3.61
        angle_steers = sm['carState'].steeringAngle
        steeringTorque = sm['carState'].steeringTorque
        steeringPressed = sm['carState'].steeringPressed
        active = sm['controlsState'].active

        angle_offset = sm['liveParameters'].angleOffset

        # Run MPC
        self.angle_steers_des_prev = self.angle_steers_des_mpc

        # Update vehicle model
        x = max(sm['liveParameters'].stiffnessFactor, 0.1)
        sr = max(sm['liveParameters'].steerRatio, 0.1)
        VM.update_params(x, sr)

        curvature_factor = VM.curvature_factor(v_ego)

        self.LP.parse_model(sm['model'])

        # Lane change logic
        one_blinker = sm['carState'].leftBlinker != sm['carState'].rightBlinker
        below_lane_change_speed = v_ego < LANE_CHANGE_SPEED_MIN

        if sm['carState'].leftBlinker:
            self.lane_change_direction = LaneChangeDirection.left
        elif sm['carState'].rightBlinker:
            self.lane_change_direction = LaneChangeDirection.right

        if (not active) or (self.lane_change_run_timer >
                            LANE_CHANGE_TIME_MAX) or (not one_blinker) or (
                                not self.lane_change_enabled):
            self.lane_change_state = LaneChangeState.off
            self.lane_change_direction = LaneChangeDirection.none
        else:
            torque_applied = sm['carState'].steeringPressed and \
                             ((sm['carState'].steeringTorque > 0 and self.lane_change_direction == LaneChangeDirection.left) or
                              (sm['carState'].steeringTorque < 0 and self.lane_change_direction == LaneChangeDirection.right))

            blindspot_detected = (
                (sm['carState'].leftBlindspot
                 and self.lane_change_direction == LaneChangeDirection.left) or
                (sm['carState'].rightBlindspot
                 and self.lane_change_direction == LaneChangeDirection.right))

            lane_change_prob = self.LP.l_lane_change_prob + self.LP.r_lane_change_prob

            # State transitions
            # off
            if self.lane_change_state == LaneChangeState.off and one_blinker and not self.prev_one_blinker and not below_lane_change_speed:
                self.lane_change_state = LaneChangeState.preLaneChange
                self.lane_change_ll_prob = 1.0
                self.lane_change_wait_timer = 0

            # pre
            elif self.lane_change_state == LaneChangeState.preLaneChange:
                self.lane_change_wait_timer += DT_MDL

                if not one_blinker or below_lane_change_speed:
                    self.lane_change_state = LaneChangeState.off
                elif not blindspot_detected and (
                        torque_applied or (self.lane_change_auto_delay
                                           and self.lane_change_wait_timer >
                                           self.lane_change_auto_delay)):
                    self.lane_change_state = LaneChangeState.laneChangeStarting

            # starting
            elif self.lane_change_state == LaneChangeState.laneChangeStarting:
                # fade out over .5s
                # ATOM logic add
                xp = [40, 60, 70, 80]
                fp2 = [0.5, 1, 1.5, 2]
                lane_time = interp(v_ego_kph, xp, fp2)
                # <==
                self.lane_change_ll_prob = max(
                    self.lane_change_ll_prob - lane_time * DT_MDL, 0.0)
                # 98% certainty
                if lane_change_prob < 0.02 and self.lane_change_ll_prob < 0.01:
                    self.lane_change_state = LaneChangeState.laneChangeFinishing

            # finishing
            elif self.lane_change_state == LaneChangeState.laneChangeFinishing:
                # fade in laneline over 1s
                self.lane_change_ll_prob = min(
                    self.lane_change_ll_prob + DT_MDL, 1.0)
                if one_blinker and self.lane_change_ll_prob > 0.99:
                    self.lane_change_state = LaneChangeState.laneChangeDone

            # done
            elif self.lane_change_state == LaneChangeState.laneChangeDone:
                if not one_blinker:
                    self.lane_change_state = LaneChangeState.off

        if self.lane_change_state in [
                LaneChangeState.off, LaneChangeState.preLaneChange
        ]:
            self.lane_change_run_timer = 0.0
        else:
            self.lane_change_run_timer += DT_MDL

        self.prev_one_blinker = one_blinker

        desire = DESIRES[self.lane_change_direction][self.lane_change_state]

        # Turn off lanes during lane change
        if desire == log.PathPlan.Desire.laneChangeRight or desire == log.PathPlan.Desire.laneChangeLeft:
            self.LP.l_prob *= self.lane_change_ll_prob
            self.LP.r_prob *= self.lane_change_ll_prob
        self.LP.update_d_poly(v_ego)

        # account for actuation delay
        self.cur_state = calc_states_after_delay(self.cur_state, v_ego,
                                                 angle_steers - angle_offset,
                                                 curvature_factor, VM.sR,
                                                 CP.steerActuatorDelay)

        v_ego_mpc = max(v_ego, 5.0)  # avoid mpc roughness due to low speed
        self.libmpc.run_mpc(self.cur_state, self.mpc_solution,
                            list(self.LP.l_poly), list(self.LP.r_poly),
                            list(self.LP.d_poly), self.LP.l_prob,
                            self.LP.r_prob, curvature_factor, v_ego_mpc,
                            self.LP.lane_width)

        # reset to current steer angle if not active or overriding
        if active:
            delta_desired = self.mpc_solution[0].delta[1]
            rate_desired = math.degrees(self.mpc_solution[0].rate[0] * VM.sR)
        else:
            delta_desired = math.radians(angle_steers - angle_offset) / VM.sR
            rate_desired = 0.0

        self.cur_state[0].delta = delta_desired
        self.angle_steers_des_mpc = float(
            math.degrees(delta_desired * VM.sR) + angle_offset)
        org_angle_steers_des = self.angle_steers_des_mpc

        # atom
        if steeringPressed:
            delta_steer = self.angle_steers_des_mpc - angle_steers
            xp = [-450, 0, 450]
            fp2 = [5, 0, 5]
            limit_steers = interp(steeringTorque, xp, fp2)
            if steeringTorque < 0:  # right
                if delta_steer > 0:
                    self.angle_steers_des_mpc = self.limit_ctrl(
                        org_angle_steers_des, limit_steers, angle_steers)
            elif steeringTorque > 0:  # left
                if delta_steer < 0:
                    self.angle_steers_des_mpc = self.limit_ctrl(
                        org_angle_steers_des, limit_steers, angle_steers)

        elif v_ego_kph < 30:  # 30
            xp = [5, 15, 30]
            fp2 = [1, 3, 5]
            limit_steers = interp(v_ego_kph, xp, fp2)
            self.angle_steers_des_mpc = self.limit_ctrl(
                org_angle_steers_des, limit_steers, angle_steers)
        # 가변 sR rate_cost
        # self.atom_sr_boost_bp = [ 1.5,  5.0, 10.0, 15.0, 20.0, 30.0, 50.0, 60.0, 100.0, 300.0]
        # self.sR_Cost          = [0.50, 0.41, 0.34, 0.28, 0.24, 0.18, 0.12, 0.10,  0.05,  0.01]
        # self.steer_rate_cost  = interp(abs(angle_steers), self.atom_sr_boost_bp, self.sR_Cost)


# # 설정값 분석을 위한 임시 코드

#     self.scale = CP.lateralTuning.lqr.scale
#     self.ki = CP.lateralTuning.lqr.ki
#     self.dc_gain = CP.lateralTuning.lqr.dcGain
#     self.steerRatio = VM.sR
#     self.laneWidth = float(self.LP.lane_width)
#     self.dPoly = [float(x) for x in self.LP.d_poly]
#     self.lPoly = [float(x) for x in self.LP.l_poly]
#     self.lProb = float(self.LP.l_prob)
#     self.rPoly = [float(x) for x in self.LP.r_poly]
#     self.rProb = float(self.LP.r_prob)

#     str2 = '/{} /{} /{} /{} /{} /{} /{} /{} /{} /{} /{} /{} /{} /{} /{}'.format(
#               v_ego_kph, angle_steers, self.angle_steers_des_mpc, angle_offset, steeringTorque, self.scale, self.ki, self.dc_gain, self.steerRatio, self.laneWidth, self.dPoly, self.lPoly, self.lProb, self.rPoly, self.rProb )
#     self.PathPlan.add( str2 )
# ###############################

#  Check for infeasable MPC solution
        mpc_nans = any(math.isnan(x) for x in self.mpc_solution[0].delta)
        t = sec_since_boot()
        if mpc_nans:
            self.libmpc.init(MPC_COST_LAT.PATH, MPC_COST_LAT.LANE,
                             MPC_COST_LAT.HEADING, self.steer_rate_cost)
            self.cur_state[0].delta = math.radians(angle_steers -
                                                   angle_offset) / VM.sR

            if t > self.last_cloudlog_t + 5.0:
                self.last_cloudlog_t = t
                cloudlog.warning("Lateral mpc - nan: True")

        if self.mpc_solution[
                0].cost > 20000. or mpc_nans:  # TODO: find a better way to detect when MPC did not converge
            self.solution_invalid_cnt += 1
        else:
            self.solution_invalid_cnt = 0
        plan_solution_valid = self.solution_invalid_cnt < 3

        plan_send = messaging.new_message('pathPlan')
        plan_send.valid = sm.all_alive_and_valid(service_list=[
            'carState', 'controlsState', 'liveParameters', 'model'
        ])
        plan_send.pathPlan.laneWidth = float(self.LP.lane_width)
        plan_send.pathPlan.dPoly = [float(x) for x in self.LP.d_poly]
        plan_send.pathPlan.lPoly = [float(x) for x in self.LP.l_poly]
        plan_send.pathPlan.lProb = float(self.LP.l_prob)
        plan_send.pathPlan.rPoly = [float(x) for x in self.LP.r_poly]
        plan_send.pathPlan.rProb = float(self.LP.r_prob)

        plan_send.pathPlan.angleSteers = float(self.angle_steers_des_mpc)
        plan_send.pathPlan.rateSteers = float(rate_desired)
        plan_send.pathPlan.angleOffset = float(
            sm['liveParameters'].angleOffsetAverage)
        plan_send.pathPlan.mpcSolutionValid = bool(plan_solution_valid)
        plan_send.pathPlan.paramsValid = bool(sm['liveParameters'].valid)

        plan_send.pathPlan.desire = desire
        plan_send.pathPlan.laneChangeState = self.lane_change_state
        plan_send.pathPlan.laneChangeDirection = self.lane_change_direction

        pm.send('pathPlan', plan_send)

        if LOG_MPC:
            dat = messaging.new_message('liveMpc')
            dat.liveMpc.x = list(self.mpc_solution[0].x)
            dat.liveMpc.y = list(self.mpc_solution[0].y)
            dat.liveMpc.psi = list(self.mpc_solution[0].psi)
            dat.liveMpc.delta = list(self.mpc_solution[0].delta)
            dat.liveMpc.cost = self.mpc_solution[0].cost
            pm.send('liveMpc', dat)