val_set = None else: train_set = MF(train=True, real=real, **kwargs) val_set = MF(train=False, real=real, **kwargs) else: raise NotImplementedError # trainer config_name = args.config_file.split('/')[-1] config_name = config_name.split('.')[0] experiment_name = '{:s}_{:s}_{:s}_{:s}'.format(args.dataset, args.scene, args.model, config_name) if args.learn_beta: experiment_name = '{:s}_learn_beta'.format(experiment_name) if args.learn_gamma: experiment_name = '{:s}_learn_gamma'.format(experiment_name) experiment_name += args.suffix trainer = Trainer(model, optimizer, train_criterion, args.config_file, experiment_name, train_set, val_set, device=args.device, checkpoint_file=args.checkpoint, resume_optim=args.resume_optim, val_criterion=val_criterion) lstm = args.model == 'vidloc' trainer.train_val(lstm=lstm)
train_set = Env(train=True, **kwargs) val_set = Env(train=False, **kwargs) elif args.model.find('mapnet') >= 0: kwargs = dict(kwargs, skip=skip, steps=steps) train_set = MF(train=True, **kwargs) val_set = MF(train=False, **kwargs) else: raise NotImplementedError # trainer config_name = args.config_file.split('/')[-1] config_name = config_name.split('.')[0] if args.reduce is None: experiment_name = '{:s}_{:s}_{:s}_{:s}'.format(args.dataset, args.scene, args.model, config_name) else: experiment_name = '{:s}_{:s}_{:s}_{:s}_reduce'.format( args.dataset, args.scene, args.model, config_name) trainer = Trainer(model, optimizer, train_criterion, args.config_file, experiment_name, train_set, val_set, device='0', checkpoint_file=args.checkpoint, resume_optim=False, val_criterion=val_criterion) trainer.train_val()
experiment_name = '{:s}_augmented'.format(experiment_name) elif args.use_augmentation == 'only': experiment_name = '{:s}_only_augmented'.format(experiment_name) if args.use_stylization: experiment_name = '{:s}_stylized'.format(experiment_name) if args.use_stylization > 1: experiment_name = '{:s}_{:d}_styles'.format(experiment_name, args.use_stylization) if args.use_synthetic: experiment_name = '{:s}_synthetic'.format(experiment_name) if det_seed >= 0: experiment_name = '{:s}_seed{}'.format(experiment_name, det_seed) #if args.styles > 0: # experiment_name = '{:s}_{}_styles'.format(experiment_name, args.styles) experiment_name += args.suffix trainer = Trainer(model, optimizer, train_criterion, args.config_file, experiment_name, train_set, val_set, device=args.device, checkpoint_file=args.checkpoint, visdom_server=args.server, visdom_port=args.port, resume_optim=args.resume_optim, val_criterion=val_criterion) lstm = args.model == 'vidloc' trainer.train_val(lstm=lstm, dual_target='multitask' in args.model)