def main(): model = MnistModel() optimizer = Optimizer() data_source = MnistDataSource() cfg = TrainConfig() cfg.load(model, optimizer, data_source, task_name="mnist", framework_name='Lasagne') saver = TrainSaver(cfg.prm['work_dir'], cfg.prm['project_name'], cfg.prm['model_filename_prefix'], data_source, task_name="mnist", suffix="_ls") trainer = Trainer(model=model, optimizer=optimizer, data_source=data_source, saver=saver) trainer.train(num_epoch=cfg.prm['max_num_epoch'], epoch_tail=cfg.prm['min_num_epoch'])
def main(): model = MnistModel() optimizer = Optimizer() data_source = MnistDataSource() cfg = TrainConfig() cfg.load(model, optimizer, data_source, task_name="mnist", framework_name='Gluon') saver = TrainSaver(cfg.prm['work_dir'], cfg.prm['project_name'], cfg.prm['model_filename_prefix'], data_source, task_name="mnist", suffix="_gl") #ctx = [mx.gpu(i) for i in cfg.prm['gpus']] if cfg.prm['gpus'] else mx.cpu() ctx = mx.gpu(0) if cfg.prm['gpus'] else mx.cpu() trainer = Trainer(model=model, optimizer=optimizer, data_source=data_source, saver=saver, ctx=ctx) trainer.train(num_epoch=cfg.prm['max_num_epoch'], epoch_tail=cfg.prm['min_num_epoch'])
def main(): model = MnistModel() optimizer = Optimizer() data_source = MnistDataSource() cfg = TrainConfig() cfg.load(model, optimizer, data_source, task_name="mnist", framework_name='TFLearn') saver = TrainSaver(cfg.prm['work_dir'], cfg.prm['project_name'], cfg.prm['model_filename_prefix'], data_source=data_source, task_name="mnist", suffix="_tfl") trainer = Trainer(model=model, optimizer=optimizer, data_source=data_source, saver=saver) # trainer.train( # num_epoch=cfg.prm['max_num_epoch'], # epoch_tail = cfg.prm['min_num_epoch'], # dat_gaussian_blur_sigma_max=1.0, # dat_gaussian_noise_sigma_max=0.05, # dat_perspective_transform_max_pt_deviation=1, # dat_max_scale_add=1.0 / (28.0 / 2), # dat_max_translate=2.0, # dat_rotate_max_angle_rad=0.2617994) trainer.hyper_train(num_epoch=cfg.prm['max_num_epoch'], epoch_tail=cfg.prm['min_num_epoch'], bo_num_iter=cfg.prm['bo_num_iter'], bo_kappa=cfg.prm['bo_kappa'], bo_min_rand_num=cfg.prm['bo_min_rand_num'], bo_results_filename='mnist_hyper.csv', synch_file_list=cfg.prm['synch_list'], sync_period=cfg.prm['sync_period'])
def main(): model = MnistModel() optimizer = Optimizer() data_source = MnistDataSource(use_augmentation=False) cfg = TrainConfig() cfg.load( model, optimizer, data_source, task_name="mnist", framework_name='MXNet') saver = TrainSaver( cfg.prm['work_dir'], cfg.prm['project_name'], cfg.prm['model_filename_prefix'], data_source, task_name="mnist", suffix="_mx") ctx = [mx.gpu(i) for i in cfg.prm['gpus']] if cfg.prm['gpus'] else mx.cpu() trainer = Trainer( model=model, optimizer=optimizer, data_source=data_source, saver=saver, ctx=ctx) trainer.hyper_train(num_epoch=cfg.prm['max_num_epoch'], epoch_tail=cfg.prm['min_num_epoch'], bo_num_iter=cfg.prm['bo_num_iter'], bo_kappa=cfg.prm['bo_kappa'], bo_min_rand_num=cfg.prm['bo_min_rand_num'], bo_results_filename='mnist_hyper.csv', synch_file_list=cfg.prm['synch_list'], sync_period=cfg.prm['sync_period'])