def __init__(self, image_set, root_path, data_path, boxes='gt', proposal_source='official', transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, mask_size=(14, 14), aspect_grouping=False, **kwargs): """ VREP Dataset :param image_set: image folder name :param root_path: root path to cache database loaded from annotation file :param data_path: path to dataset :param boxes: boxes to use, 'gt' or 'proposal' :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param mask_size: size of instance mask of each object :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(VRep, self).__init__() assert not cache_mode, 'currently not support cache mode!' self.data_json = 'obj_det_res.json'#'image_seg_test.json'#'obj_det_res.json' self.ref_json = 'ref_annotations.json' self.boxes = boxes self.refer = Refer() self.test_mode = test_mode self.data_path = data_path self.root_path = root_path self.transform = transform self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box self.mask_size = mask_size if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) if zip_mode: self.zipreader = ZipReader() self.database = self.load_annotations() if self.aspect_grouping: self.group_ids = self.group_aspect(self.database)
def __init__(self, ann_file, image_set, root_path, data_path, seq_len=64, with_precomputed_visual_feat=False, mask_raw_pixels=True, with_rel_task=True, with_mlm_task=True, with_mvrc_task=True, transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, aspect_grouping=False, **kwargs): """ Conceptual Captions Dataset :param ann_file: annotation jsonl file :param image_set: image folder name, e.g., 'vcr1images' :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(ParallelTextDataset, self).__init__() assert not cache_mode, 'currently not support cache mode!' assert not test_mode annot = { 'train': 'train.json', 'val': 'test.json', 'test': 'test.json' } self.seq_len = seq_len self.with_rel_task = with_rel_task self.with_mlm_task = with_mlm_task self.with_mvrc_task = with_mvrc_task self.data_path = data_path self.root_path = root_path self.ann_file = os.path.join(data_path, annot[image_set]) self.with_precomputed_visual_feat = with_precomputed_visual_feat self.mask_raw_pixels = mask_raw_pixels self.image_set = image_set self.transform = transform self.test_mode = test_mode self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) self.zipreader = ZipReader() # FM: Customise for multi30k dataset self.database = list(jsonlines.open(self.ann_file)) if self.aspect_grouping: assert False, "not support aspect grouping currently!" self.group_ids = self.group_aspect(self.database) print('mask_raw_pixels: ', self.mask_raw_pixels)
class ParallelTextDataset(Dataset): def __init__(self, ann_file, image_set, root_path, data_path, seq_len=64, with_precomputed_visual_feat=False, mask_raw_pixels=True, with_rel_task=True, with_mlm_task=True, with_mvrc_task=True, transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, aspect_grouping=False, **kwargs): """ Conceptual Captions Dataset :param ann_file: annotation jsonl file :param image_set: image folder name, e.g., 'vcr1images' :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(ParallelTextDataset, self).__init__() assert not cache_mode, 'currently not support cache mode!' assert not test_mode annot = { 'train': 'train.json', 'val': 'test.json', 'test': 'test.json' } self.seq_len = seq_len self.with_rel_task = with_rel_task self.with_mlm_task = with_mlm_task self.with_mvrc_task = with_mvrc_task self.data_path = data_path self.root_path = root_path self.ann_file = os.path.join(data_path, annot[image_set]) self.with_precomputed_visual_feat = with_precomputed_visual_feat self.mask_raw_pixels = mask_raw_pixels self.image_set = image_set self.transform = transform self.test_mode = test_mode self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) self.zipreader = ZipReader() # FM: Customise for multi30k dataset self.database = list(jsonlines.open(self.ann_file)) if self.aspect_grouping: assert False, "not support aspect grouping currently!" self.group_ids = self.group_aspect(self.database) print('mask_raw_pixels: ', self.mask_raw_pixels) @property def data_names(self): return ['text', 'relationship_label', 'mlm_labels'] def __getitem__(self, index): idb = self.database[index] # Task #1: Caption-Image Relationship Prediction _p = random.random() if _p < 0.5 or (not self.with_rel_task): relationship_label = 1 caption_en = idb['caption_en'] caption_de = idb['caption_de'] else: relationship_label = 0 rand_index = random.randrange(0, len(self.database)) while rand_index == index: rand_index = random.randrange(0, len(self.database)) caption_en = self.database[rand_index]['caption_en'] caption_de = self.database[rand_index]['caption_de'] # Task #2: Masked Language Modeling - Adapted for two languages if self.with_mlm_task: # FM: removing joining of caption - split into two languages caption_tokens_en = self.tokenizer.basic_tokenizer.tokenize( caption_en) caption_tokens_en, mlm_labels_en = self.random_word_wwm( caption_tokens_en) caption_tokens_de = self.tokenizer.basic_tokenizer.tokenize( caption_de) caption_tokens_de, mlm_labels_de = self.random_word_wwm( caption_tokens_de) else: caption_tokens_en = self.tokenizer.tokenize(caption_en) caption_tokens_de = self.tokenizer.tokenize(caption_de) mlm_labels_en = [-1] * len(caption_tokens_en) mlm_labels_de = [-1] * len(caption_tokens_de) text_tokens = ['[CLS]'] + caption_tokens_en + [ '[SEP]' ] + caption_tokens_de + ['[SEP]'] mlm_labels = [-1] + mlm_labels_en + [-1] + mlm_labels_de + [-1] # convert tokens to ids text = self.tokenizer.convert_tokens_to_ids(text_tokens) # truncate seq to max len if len(text) > self.seq_len: text_len_keep = len(text) while (text_len_keep) > self.seq_len and (text_len_keep > 0): text_len_keep -= 1 if text_len_keep < 2: text_len_keep = 2 text = text[:(text_len_keep - 1)] + [text[-1]] return text, relationship_label, mlm_labels # def random_word(self, tokens): # output_label = [] # # for i, token in enumerate(tokens): # prob = random.random() # # mask token with 15% probability # if prob < 0.15: # prob /= 0.15 # # # 80% randomly change token to mask token # if prob < 0.8: # tokens[i] = "[MASK]" # # # 10% randomly change token to random token # elif prob < 0.9: # tokens[i] = random.choice(list(self.tokenizer.vocab.items()))[0] # # # -> rest 10% randomly keep current token # # # append current token to output (we will predict these later) # try: # output_label.append(self.tokenizer.vocab[token]) # except KeyError: # # For unknown words (should not occur with BPE vocab) # output_label.append(self.tokenizer.vocab["[UNK]"]) # logging.warning("Cannot find token '{}' in vocab. Using [UNK] insetad".format(token)) # else: # # no masking token (will be ignored by loss function later) # output_label.append(-1) # # # if no word masked, random choose a word to mask # if self.force_mask: # if all([l_ == -1 for l_ in output_label]): # choosed = random.randrange(0, len(output_label)) # output_label[choosed] = self.tokenizer.vocab[tokens[choosed]] # # return tokens, output_label def random_word_wwm(self, tokens): output_tokens = [] output_label = [] for i, token in enumerate(tokens): sub_tokens = self.tokenizer.wordpiece_tokenizer.tokenize(token) prob = random.random() # mask token with 15% probability if prob < 0.15: prob /= 0.15 # 80% randomly change token to mask token if prob < 0.8: for sub_token in sub_tokens: output_tokens.append("[MASK]") # 10% randomly change token to random token elif prob < 0.9: for sub_token in sub_tokens: output_tokens.append( random.choice(list(self.tokenizer.vocab.keys()))) # -> rest 10% randomly keep current token else: for sub_token in sub_tokens: output_tokens.append(sub_token) # append current token to output (we will predict these later) for sub_token in sub_tokens: try: output_label.append(self.tokenizer.vocab[sub_token]) except KeyError: # For unknown words (should not occur with BPE vocab) output_label.append(self.tokenizer.vocab["[UNK]"]) logging.warning( "Cannot find sub_token '{}' in vocab. Using [UNK] insetad" .format(sub_token)) else: for sub_token in sub_tokens: # no masking token (will be ignored by loss function later) output_tokens.append(sub_token) output_label.append(-1) ## if no word masked, random choose a word to mask # if all([l_ == -1 for l_ in output_label]): # choosed = random.randrange(0, len(output_label)) # output_label[choosed] = self.tokenizer.vocab[tokens[choosed]] return output_tokens, output_label def random_mask_region(self, regions_cls_scores): num_regions, num_classes = regions_cls_scores.shape output_op = [] output_label = [] for k, cls_scores in enumerate(regions_cls_scores): prob = random.random() # mask region with 15% probability if prob < 0.15: prob /= 0.15 if prob < 0.9: # 90% randomly replace appearance feature by "MASK" output_op.append(1) else: # -> rest 10% randomly keep current appearance feature output_op.append(0) # append class of region to output (we will predict these later) output_label.append(cls_scores) else: # no masking region (will be ignored by loss function later) output_op.append(0) output_label.append(np.zeros_like(cls_scores)) # # if no region masked, random choose a region to mask # if all([op == 0 for op in output_op]): # choosed = random.randrange(0, len(output_op)) # output_op[choosed] = 1 # output_label[choosed] = regions_cls_scores[choosed] return output_op, output_label @staticmethod def b64_decode(string): return base64.decodebytes(string.encode()) @staticmethod def group_aspect(database): print('grouping aspect...') t = time.time() # get shape of all images widths = torch.as_tensor([idb['width'] for idb in database]) heights = torch.as_tensor([idb['height'] for idb in database]) # group group_ids = torch.zeros(len(database)) horz = widths >= heights vert = 1 - horz group_ids[horz] = 0 group_ids[vert] = 1 print('Done (t={:.2f}s)'.format(time.time() - t)) return group_ids def __len__(self): return len(self.database) def _load_image(self, path): if '.zip@' in path: return self.zipreader.imread(path).convert('RGB') else: return Image.open(path).convert('RGB') def _load_json(self, path): if '.zip@' in path: f = self.zipreader.read(path) return json.loads(f.decode()) else: with open(path, 'r') as f: return json.load(f)
def __init__(self, image_set, root_path, data_path, boxes='gt', proposal_source='official', transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, mask_size=(14, 14), aspect_grouping=False, **kwargs): """ RefCOCO+ Dataset :param image_set: image folder name :param root_path: root path to cache database loaded from annotation file :param data_path: path to dataset :param boxes: boxes to use, 'gt' or 'proposal' :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param mask_size: size of instance mask of each object :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(RefCOCO, self).__init__() assert not cache_mode, 'currently not support cache mode!' categories = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'trafficlight', 'firehydrant', 'stopsign', 'parkingmeter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sportsball', 'kite', 'baseballbat', 'baseballglove', 'skateboard', 'surfboard', 'tennisracket', 'bottle', 'wineglass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hotdog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'pottedplant', 'bed', 'diningtable', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cellphone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddybear', 'hairdrier', 'toothbrush' ] coco_annot_files = { "train2014": "annotations/instances_train2014.json", "val2014": "annotations/instances_val2014.json", "test2015": "annotations/image_info_test2015.json", } proposal_dets = 'refcoco+/proposal/res101_coco_minus_refer_notime_dets.json' proposal_masks = 'refcoco+/proposal/res101_coco_minus_refer_notime_masks.json' self.vg_proposal = ("vgbua_res101_precomputed", "trainval2014_resnet101_faster_rcnn_genome") self.proposal_source = proposal_source self.boxes = boxes self.test_mode = test_mode self.category_to_idx = {c: i for i, c in enumerate(categories)} self.data_path = data_path self.root_path = root_path self.transform = transform self.image_sets = [iset.strip() for iset in image_set.split('+')] self.coco = COCO(annotation_file=os.path.join( data_path, coco_annot_files['train2014'])) self.refer = REFER(data_path, dataset='refcoco+', splitBy='unc') self.refer_ids = [] for iset in self.image_sets: self.refer_ids.extend(self.refer.getRefIds(split=iset)) self.refs = self.refer.loadRefs(ref_ids=self.refer_ids) if 'proposal' in boxes: with open(os.path.join(data_path, proposal_dets), 'r') as f: proposal_list = json.load(f) self.proposals = {} for proposal in proposal_list: image_id = proposal['image_id'] if image_id in self.proposals: self.proposals[image_id].append(proposal['box']) else: self.proposals[image_id] = [proposal['box']] self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box self.mask_size = mask_size if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) if zip_mode: self.zipreader = ZipReader() self.database = self.load_annotations() if self.aspect_grouping: self.group_ids = self.group_aspect(self.database)
class RefCOCO(Dataset): def __init__(self, image_set, root_path, data_path, boxes='gt', proposal_source='official', transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, mask_size=(14, 14), aspect_grouping=False, **kwargs): """ RefCOCO+ Dataset :param image_set: image folder name :param root_path: root path to cache database loaded from annotation file :param data_path: path to dataset :param boxes: boxes to use, 'gt' or 'proposal' :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param mask_size: size of instance mask of each object :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(RefCOCO, self).__init__() assert not cache_mode, 'currently not support cache mode!' categories = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'trafficlight', 'firehydrant', 'stopsign', 'parkingmeter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sportsball', 'kite', 'baseballbat', 'baseballglove', 'skateboard', 'surfboard', 'tennisracket', 'bottle', 'wineglass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hotdog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'pottedplant', 'bed', 'diningtable', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cellphone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddybear', 'hairdrier', 'toothbrush' ] coco_annot_files = { "train2014": "annotations/instances_train2014.json", "val2014": "annotations/instances_val2014.json", "test2015": "annotations/image_info_test2015.json", } proposal_dets = 'refcoco+/proposal/res101_coco_minus_refer_notime_dets.json' proposal_masks = 'refcoco+/proposal/res101_coco_minus_refer_notime_masks.json' self.vg_proposal = ("vgbua_res101_precomputed", "trainval2014_resnet101_faster_rcnn_genome") self.proposal_source = proposal_source self.boxes = boxes self.test_mode = test_mode self.category_to_idx = {c: i for i, c in enumerate(categories)} self.data_path = data_path self.root_path = root_path self.transform = transform self.image_sets = [iset.strip() for iset in image_set.split('+')] self.coco = COCO(annotation_file=os.path.join( data_path, coco_annot_files['train2014'])) self.refer = REFER(data_path, dataset='refcoco+', splitBy='unc') self.refer_ids = [] for iset in self.image_sets: self.refer_ids.extend(self.refer.getRefIds(split=iset)) self.refs = self.refer.loadRefs(ref_ids=self.refer_ids) if 'proposal' in boxes: with open(os.path.join(data_path, proposal_dets), 'r') as f: proposal_list = json.load(f) self.proposals = {} for proposal in proposal_list: image_id = proposal['image_id'] if image_id in self.proposals: self.proposals[image_id].append(proposal['box']) else: self.proposals[image_id] = [proposal['box']] self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box self.mask_size = mask_size if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) if zip_mode: self.zipreader = ZipReader() self.database = self.load_annotations() if self.aspect_grouping: self.group_ids = self.group_aspect(self.database) @property def data_names(self): if self.test_mode: return ['image', 'boxes', 'im_info', 'expression'] else: return ['image', 'boxes', 'im_info', 'expression', 'label'] def __getitem__(self, index): idb = self.database[index] # image related img_id = idb['image_id'] image = self._load_image(idb['image_fn']) im_info = torch.as_tensor([idb['width'], idb['height'], 1.0, 1.0]) if not self.test_mode: gt_box = torch.as_tensor(idb['gt_box']) flipped = False if self.boxes == 'gt': ann_ids = self.coco.getAnnIds(imgIds=img_id) anns = self.coco.loadAnns(ann_ids) boxes = [] for ann in anns: x_, y_, w_, h_ = ann['bbox'] boxes.append([x_, y_, x_ + w_, y_ + h_]) boxes = torch.as_tensor(boxes) elif self.boxes == 'proposal': if self.proposal_source == 'official': boxes = torch.as_tensor(self.proposals[img_id]) boxes[:, [2, 3]] += boxes[:, [0, 1]] elif self.proposal_source == 'vg': box_file = os.path.join( self.data_path, self.vg_proposal[0], '{0}.zip@/{0}'.format(self.vg_proposal[1])) boxes_fn = os.path.join(box_file, '{}.json'.format(idb['image_id'])) boxes_data = self._load_json(boxes_fn) boxes = torch.as_tensor( np.frombuffer(self.b64_decode(boxes_data['boxes']), dtype=np.float32).reshape( (boxes_data['num_boxes'], -1))) else: raise NotImplemented elif self.boxes == 'proposal+gt' or self.boxes == 'gt+proposal': if self.proposal_source == 'official': boxes = torch.as_tensor(self.proposals[img_id]) boxes[:, [2, 3]] += boxes[:, [0, 1]] elif self.proposal_source == 'vg': box_file = os.path.join( self.data_path, self.vg_proposal[0], '{0}.zip@/{0}'.format(self.vg_proposal[1])) boxes_fn = os.path.join(box_file, '{}.json'.format(idb['image_id'])) boxes_data = self._load_json(boxes_fn) boxes = torch.as_tensor( np.frombuffer(self.b64_decode(boxes_data['boxes']), dtype=np.float32).reshape( (boxes_data['num_boxes'], -1))) ann_ids = self.coco.getAnnIds(imgIds=img_id) anns = self.coco.loadAnns(ann_ids) gt_boxes = [] for ann in anns: x_, y_, w_, h_ = ann['bbox'] gt_boxes.append([x_, y_, x_ + w_, y_ + h_]) gt_boxes = torch.as_tensor(gt_boxes) boxes = torch.cat((boxes, gt_boxes), 0) else: raise NotImplemented if self.add_image_as_a_box: w0, h0 = im_info[0], im_info[1] image_box = torch.as_tensor([[0.0, 0.0, w0 - 1, h0 - 1]]) boxes = torch.cat((image_box, boxes), dim=0) if self.transform is not None: if not self.test_mode: boxes = torch.cat((gt_box[None], boxes), 0) image, boxes, _, im_info, flipped = self.transform( image, boxes, None, im_info, flipped) if not self.test_mode: gt_box = boxes[0] boxes = boxes[1:] # clamp boxes w = im_info[0].item() h = im_info[1].item() boxes[:, [0, 2]] = boxes[:, [0, 2]].clamp(min=0, max=w - 1) boxes[:, [1, 3]] = boxes[:, [1, 3]].clamp(min=0, max=h - 1) if not self.test_mode: gt_box[[0, 2]] = gt_box[[0, 2]].clamp(min=0, max=w - 1) gt_box[[1, 3]] = gt_box[[1, 3]].clamp(min=0, max=h - 1) # assign label to each box by its IoU with gt_box if not self.test_mode: boxes_ious = bbox_iou_py_vectorized(boxes, gt_box[None]).view(-1) label = (boxes_ious > 0.5).float() # expression exp_tokens = idb['tokens'] exp_retokens = self.tokenizer.tokenize(' '.join(exp_tokens)) if flipped: exp_retokens = self.flip_tokens(exp_retokens, verbose=True) exp_ids = self.tokenizer.convert_tokens_to_ids(exp_retokens) if self.test_mode: return image, boxes, im_info, exp_ids else: return image, boxes, im_info, exp_ids, label @staticmethod def flip_tokens(tokens, verbose=True): changed = False tokens_new = [tok for tok in tokens] for i, tok in enumerate(tokens): if tok == 'left': tokens_new[i] = 'right' changed = True elif tok == 'right': tokens_new[i] = 'left' changed = True if verbose and changed: logging.info('[Tokens Flip] {} -> {}'.format(tokens, tokens_new)) return tokens_new @staticmethod def b64_decode(string): return base64.decodebytes(string.encode()) def load_annotations(self): tic = time.time() database = [] db_cache_name = 'refcoco+_boxes_{}_{}'.format( self.boxes, '+'.join(self.image_sets)) if self.zip_mode: db_cache_name = db_cache_name + '_zipmode' if self.test_mode: db_cache_name = db_cache_name + '_testmode' db_cache_root = os.path.join(self.root_path, 'cache') db_cache_path = os.path.join(db_cache_root, '{}.pkl'.format(db_cache_name)) if os.path.exists(db_cache_path): if not self.ignore_db_cache: # reading cached database print('cached database found in {}.'.format(db_cache_path)) with open(db_cache_path, 'rb') as f: print('loading cached database from {}...'.format( db_cache_path)) tic = time.time() database = cPickle.load(f) print('Done (t={:.2f}s)'.format(time.time() - tic)) return database else: print('cached database ignored.') # ignore or not find cached database, reload it from annotation file print('loading database of split {}...'.format('+'.join( self.image_sets))) tic = time.time() for ref_id, ref in zip(self.refer_ids, self.refs): iset = 'train2014' if not self.test_mode: gt_x, gt_y, gt_w, gt_h = self.refer.getRefBox(ref_id=ref_id) if self.zip_mode: image_fn = os.path.join( self.data_path, iset + '.zip@/' + iset, 'COCO_{}_{:012d}.jpg'.format(iset, ref['image_id'])) else: image_fn = os.path.join( self.data_path, iset, 'COCO_{}_{:012d}.jpg'.format(iset, ref['image_id'])) for sent in ref['sentences']: idb = { 'sent_id': sent['sent_id'], 'ann_id': ref['ann_id'], 'ref_id': ref['ref_id'], 'image_id': ref['image_id'], 'image_fn': image_fn, 'width': self.coco.imgs[ref['image_id']]['width'], 'height': self.coco.imgs[ref['image_id']]['height'], 'raw': sent['raw'], 'sent': sent['sent'], 'tokens': sent['tokens'], 'category_id': ref['category_id'], 'gt_box': [gt_x, gt_y, gt_x + gt_w, gt_y + gt_h] if not self.test_mode else None } database.append(idb) print('Done (t={:.2f}s)'.format(time.time() - tic)) # cache database via cPickle if self.cache_db: print('caching database to {}...'.format(db_cache_path)) tic = time.time() if not os.path.exists(db_cache_root): makedirsExist(db_cache_root) with open(db_cache_path, 'wb') as f: cPickle.dump(database, f) print('Done (t={:.2f}s)'.format(time.time() - tic)) return database @staticmethod def group_aspect(database): print('grouping aspect...') t = time.time() # get shape of all images widths = torch.as_tensor([idb['width'] for idb in database]) heights = torch.as_tensor([idb['height'] for idb in database]) # group group_ids = torch.zeros(len(database)) horz = widths >= heights vert = 1 - horz group_ids[horz] = 0 group_ids[vert] = 1 print('Done (t={:.2f}s)'.format(time.time() - t)) return group_ids def __len__(self): return len(self.database) def _load_image(self, path): if '.zip@' in path: return self.zipreader.imread(path).convert('RGB') else: return Image.open(path).convert('RGB') def _load_json(self, path): if '.zip@' in path: f = self.zipreader.read(path) return json.loads(f.decode()) else: with open(path, 'r') as f: return json.load(f)
def __init__(self, root_path, data_path, boxes='gt', proposal_source='official', transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, mask_size=(14, 14), aspect_grouping=False, **kwargs): """ Foil Dataset :param image_set: image folder name :param root_path: root path to cache database loaded from annotation file :param data_path: path to dataset :param boxes: boxes to use, 'gt' or 'proposal' :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param mask_size: size of instance mask of each object :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(Foil, self).__init__() assert not cache_mode, 'currently not support cache mode!' coco_annot_files = { "train2014": "annotations/instances_train2014.json", "val2014": "annotations/instances_val2014.json", "test2015": "annotations/image_info_test2015.json", } foil_annot_files = { "train": "foil/foilv1.0_train_2017.json", "test": "foil/foilv1.0_test_2017.json" } foil_vocab_file = "foil/vocab.txt" self.vg_proposal = ("vgbua_res101_precomputed", "trainval2014_resnet101_faster_rcnn_genome") self.test_mode = test_mode self.data_path = data_path self.root_path = root_path self.transform = transform vocab_file = open(os.path.join(data_path, foil_vocab_file), 'r') vocab_lines = vocab_file.readlines() vocab_lines = [v.strip() for v in vocab_lines] self.itos = vocab_lines self.stoi = dict(list(zip(self.itos, range(len(vocab_lines))))) if self.test_mode: self.image_set = "val2014" coco_annot_file = coco_annot_files["val2014"] else: self.image_set = "train2014" coco_annot_file = coco_annot_files["train2014"] self.coco = COCO( annotation_file=os.path.join(data_path, coco_annot_file)) self.foil = FOIL(data_path, 'train' if not test_mode else 'test') self.foil_ids = list(self.foil.Foils.keys()) self.foils = self.foil.loadFoils(foil_ids=self.foil_ids) if 'proposal' in boxes: with open(os.path.join(data_path, proposal_dets), 'r') as f: proposal_list = json.load(f) self.proposals = {} for proposal in proposal_list: image_id = proposal['image_id'] if image_id in self.proposals: self.proposals[image_id].append(proposal['box']) else: self.proposals[image_id] = [proposal['box']] self.boxes = boxes self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box self.mask_size = mask_size if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) if zip_mode: self.zipreader = ZipReader() self.database = self.load_annotations() if self.aspect_grouping: self.group_ids = self.group_aspect(self.database)
class CLS3(Dataset): def __init__(self, root_path=None, image_set='train', transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, mask_size=(14, 14), aspect_grouping=False, **kwargs): """ Visual Question Answering Dataset :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param mask_size: size of instance mask of each object :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(CLS3, self).__init__() cache_dir = False assert not cache_mode, 'currently not support cache mode!' categories = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'trafficlight', 'firehydrant', 'stopsign', 'parkingmeter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sportsball', 'kite', 'baseballbat', 'baseballglove', 'skateboard', 'surfboard', 'tennisracket', 'bottle', 'wineglass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hotdog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'pottedplant', 'bed', 'diningtable', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cellphone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddybear', 'hairdrier', 'toothbrush' ] self.category_to_idx = {c: i for i, c in enumerate(categories)} self.data_split = image_set # HACK: reuse old parameter self.periodStrip = re.compile("(?!<=\d)(\.)(?!\d)") self.commaStrip = re.compile("(\d)(\,)(\d)") self.punct = [ ';', r"/", '[', ']', '"', '{', '}', '(', ')', '=', '+', '\\', '_', '-', '>', '<', '@', '`', ',', '?', '!' ] self.test_mode = test_mode self.root_path = root_path self.box_bank = {} self.transform = transform self.zip_mode = zip_mode self.aspect_grouping = aspect_grouping self.add_image_as_a_box = add_image_as_a_box self.cache_dir = os.path.join(root_path, 'cache') # return_offsets_mapping model_name = 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name self.fast_tokenizer = AutoTokenizer.from_pretrained( 'bert-base-uncased', cache_dir=self.cache_dir, use_fast=True, return_offsets_mapping=True) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( model_name, cache_dir=self.cache_dir) self.max_txt_token = 128 if zip_mode: self.zipreader = ZipReader() self.anno_aug = 'anno_aug' in kwargs self.database = self.load_annotations() self.use_img_box = True self.random_drop_tags = False # if self.aspect_grouping: # self.group_ids = self.group_aspect(self.database) @property def data_names(self): if self.use_img_box: if self.test_mode: return [ 'image', 'boxes', 'im_info', 'text', 'img_boxes', 'text_tags', 'id', ] else: return [ 'image', 'boxes', 'im_info', 'text', 'img_boxes', 'text_tags', 'label', 'id' ] else: if self.test_mode: return [ 'image', 'boxes', 'im_info', 'text', 'id', ] else: return ['image', 'boxes', 'im_info', 'text', 'label', 'id'] @property def weights_by_class(self): labels = [] num_per_class = collections.defaultdict(lambda: 0) for data in self.database: labels.append(data['label']) num_per_class[data['label']] += 1 weight_per_class = { k: 1 / len(num_per_class) / v for k, v in num_per_class.items() } sampling_weight = [weight_per_class[label] for label in labels] return sampling_weight def clip_box_and_score(self, box_and_score): new_list = [] for box_sc in box_and_score: cliped = {k: min(max(v, 0), 1) for k, v in box_sc.items()} new_list.append(cliped) return new_list def __getitem__(self, index): idb = self.database[index] # image, boxes, im_info image = self._load_image(os.path.join(self.root_path, idb['img'])) w0, h0 = image.size if len(idb['boxes_and_score']) == 0: boxes = torch.as_tensor([[0.0, 0.0, w0 - 1, h0 - 1, 0]]) else: boxes = torch.as_tensor([[ box_sc['xmin'] * w0, box_sc['ymin'] * h0, box_sc['xmax'] * w0, box_sc['ymax'] * h0, box_sc['class_id'], ] for box_sc in idb['boxes_and_score']]) if self.add_image_as_a_box: boxes = torch.cat( (torch.as_tensor([[0.0, 0.0, w0 - 1, h0 - 1, 0]]), boxes), dim=0) race_tags = [box_sc['race'] for box_sc in idb['boxes_and_score']] gender_tags = [box_sc['gender'] for box_sc in idb['boxes_and_score']] im_info = torch.tensor([w0, h0, 1.0, 1.0]) # clamp boxes w = im_info[0].item() h = im_info[1].item() boxes[:, [0, 2]] = boxes[:, [0, 2]].clamp(min=0, max=w - 1) boxes[:, [1, 3]] = boxes[:, [1, 3]].clamp(min=0, max=h - 1) flipped = False if self.transform is not None: image, boxes, _, im_info, flipped = self.transform( image, boxes, None, im_info, flipped) # question if 'token_id' not in idb: main_txt = idb['text'] img_tags = [' '.join(des) for des in idb['partition_description']] img_tags_str = '' img_tags_part = [] if not self.random_drop_tags or (self.random_drop_tags and random.random() > 0.5): for p, img_tag in enumerate(img_tags): if img_tag: append_str = img_tag + (' [SEP] ' if p != len(img_tags) - 1 else '') img_tags_str += append_str img_tags_part += [p] * len(append_str) person_tags_str = '' person_tags_part = [] for j, (race, gend) in enumerate(zip(race_tags, gender_tags)): if race is not None: is_last = not any( [rt is not None for rt in race_tags[j + 1:]]) append_str = f"{race.replace('_', ' ')} {gend}" append_str += "" if is_last else " [SEP] " person_tags_str += append_str person_tags_part += [ len(idb['image_partition']) * int(self.use_img_box) + int(self.add_image_as_a_box) + j ] * len(append_str) text_with_tag = f"{main_txt} [SEP] {img_tags_str} [SEP] {person_tags_str}" # print(f"[{index}] {text_with_tag}") result = self.fast_tokenizer(text_with_tag, return_offsets_mapping=True, add_special_tokens=False) token_id = result['input_ids'] token_offset = result['offset_mapping'] if self.use_img_box: text_partition = idb['text_char_partition_id'] text_partition += [0] * len( " [SEP] " ) + img_tags_part # additinoal partition id for [SEP] text_partition += [0] * len( " [SEP] " ) + person_tags_part # additinoal partition id for [SEP] assert len(text_partition) == len(text_with_tag), \ F"{len(text_partition)} != {len(text_with_tag)}" token_tags = [] for a, b in filter(lambda x: x[1] - x[0] > 0, token_offset): char_tags = text_partition[a:b] # print(a, b, char_tags) cnt = collections.Counter(char_tags) token_tags.append(cnt.most_common(1)[0][0]) idb['text_tags'] = token_tags idb['image_partition'] = np.asarray( idb['image_partition'], dtype=np.float32)[ ..., :4] # HACK: remove det score from mmdet else: idb['text_tags'] = [0] * len(token_id) # token_id = self.tokenizer.convert_tokens_to_ids(text_tokens) if token_id[-1] == self.fast_tokenizer.sep_token_id: token_id = token_id[:-1] idb['text_tags'] = idb['text_tags'][:-1] if len(token_id) > self.max_txt_token: token_id = token_id[:self.max_txt_token] idb['text_tags'] = idb['text_tags'][:self.max_txt_token] idb['token_id'] = token_id assert len(idb['token_id']) == len(idb['text_tags']) else: token_id = idb['token_id'] if self.use_img_box: if self.test_mode: return ( image, boxes, im_info, token_id, idb['image_partition'], idb['text_tags'], idb['id'], ) else: # print([(self.answer_vocab[i], p.item()) for i, p in enumerate(label) if p.item() != 0]) label = torch.Tensor([float(idb['label'])]) return ( image, boxes, im_info, token_id, idb['image_partition'], idb['text_tags'], label, idb['id'], ) else: if self.test_mode: return image, boxes, im_info, token_id, idb['id'] else: # print([(self.answer_vocab[i], p.item()) for i, p in enumerate(label) if p.item() != 0]) label = torch.Tensor([float(idb['label'])]) return image, boxes, im_info, token_id, label, idb['id'] @staticmethod def b64_decode(string): return base64.decodebytes(string.encode()) def load_annotations(self): tic = time.time() img_name_to_annos = collections.defaultdict(list) test_json = os.path.join(self.root_path, 'test_unseen.entity.jsonl') dev_json = os.path.join(self.root_path, 'dev_seen.entity.jsonl') dev_train_json = os.path.join(self.root_path, 'dev_all.entity.jsonl') train_json = (os.path.join(self.root_path, 'train.entity.aug.jsonl') if self.anno_aug else os.path.join( self.root_path, 'train.entity.jsonl')) box_annos_json = os.path.join(self.root_path, 'box_annos.race.json') test_sample = [] dev_sample = [] train_sample = [] dev_train_sample = [] with open(train_json, mode='r') as f: for line in f.readlines(): train_sample.append(json.loads(line)) with open(dev_train_json, mode='r') as f: for line in f.readlines(): dev_train_sample.append(json.loads(line)) with open(test_json, mode='r') as f: for line in f.readlines(): test_sample.append(json.loads(line)) with open(dev_json, mode='r') as f: for line in f.readlines(): dev_sample.append(json.loads(line)) with open(box_annos_json, mode='r') as f: box_annos = json.load(f) sample_sets = [] if self.data_split == 'train': sample_sets.append(train_sample) elif self.data_split == 'val': sample_sets.append(dev_sample) elif self.data_split == 'train+val': sample_sets.append(train_sample) sample_sets.append(dev_train_sample) elif self.data_split == 'test': sample_sets.append(test_sample) else: raise RuntimeError(f"Unknown dataset split: {self.data_split}") for sample_set in sample_sets: for sample in sample_set: img_name = os.path.basename(sample['img']) img_name_to_annos[img_name].append(sample) for box_anno in box_annos: img_name = box_anno['img_name'] if img_name in img_name_to_annos: for sample in img_name_to_annos[img_name]: sample.update(box_anno) print('Done (t={:.2f}s)'.format(time.time() - tic)) flatten = [] for annos in img_name_to_annos.values(): flatten += annos return flatten @staticmethod def group_aspect(database): print('grouping aspect...') t = time.time() # get shape of all images widths = torch.as_tensor([idb['width'] for idb in database]) heights = torch.as_tensor([idb['height'] for idb in database]) # group group_ids = torch.zeros(len(database)) horz = widths >= heights vert = 1 - horz group_ids[horz] = 0 group_ids[vert] = 1 print('Done (t={:.2f}s)'.format(time.time() - t)) return group_ids def load_precomputed_boxes(self, box_file): if box_file in self.box_bank: return self.box_bank[box_file] else: in_data = {} with open(box_file, "r") as tsv_in_file: reader = csv.DictReader(tsv_in_file, delimiter='\t', fieldnames=FIELDNAMES) for item in reader: item['image_id'] = int(item['image_id']) item['image_h'] = int(item['image_h']) item['image_w'] = int(item['image_w']) item['num_boxes'] = int(item['num_boxes']) for field in ([ 'boxes', 'features' ] if self.with_precomputed_visual_feat else ['boxes']): item[field] = np.frombuffer( base64.decodebytes(item[field].encode()), dtype=np.float32).reshape((item['num_boxes'], -1)) in_data[item['image_id']] = item self.box_bank[box_file] = in_data return in_data def __len__(self): return len(self.database) def _load_image(self, path): if '.zip@' in path: return self.zipreader.imread(path).convert('RGB') else: return Image.open(path).convert('RGB') def _load_json(self, path): if '.zip@' in path: f = self.zipreader.read(path) return json.loads(f.decode()) else: with open(path, 'r') as f: return json.load(f)
class Multi30kDataset2018(Dataset): def __init__(self, ann_file, image_set, root_path, data_path, seq_len=64, with_precomputed_visual_feat=False, mask_raw_pixels=True, with_rel_task=True, with_mlm_task=False, with_mvrc_task=False, transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, aspect_grouping=False, languages_used='first', MLT_vocab='bert-base-german-cased-vocab.txt', **kwargs): """ Conceptual Captions Dataset :param ann_file: annotation jsonl file :param image_set: image folder name, e.g., 'vcr1images' :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(Multi30kDataset2018, self).__init__() assert not cache_mode, 'currently not support cache mode!' # TODO: need to remove this to allows testing # assert not test_mode annot = {'train': 'train_MLT_frcnn.json', 'val': 'val_MLT_frcnn.json', 'test2015': 'test_MLT_2018_renamed_frcnn.json'} self.seq_len = seq_len self.with_rel_task = with_rel_task self.with_mlm_task = with_mlm_task self.with_mvrc_task = with_mvrc_task self.data_path = data_path self.root_path = root_path self.ann_file = os.path.join(data_path, annot[image_set]) self.with_precomputed_visual_feat = with_precomputed_visual_feat self.mask_raw_pixels = mask_raw_pixels self.image_set = image_set self.transform = transform self.test_mode = test_mode self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping #FM edit: added option for how many captions self.languages_used = languages_used self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) self.zipreader = ZipReader() # FM: Customise for multi30k dataset self.database = list(jsonlines.open(self.ann_file)) if not self.zip_mode: for i, idb in enumerate(self.database): self.database[i]['frcnn'] = idb['frcnn'].replace('.zip@', '')\ .replace('.0', '').replace('.1', '').replace('.2', '').replace('.3', '') self.database[i]['image'] = idb['image'].replace('.zip@', '') if self.aspect_grouping: assert False, "not support aspect grouping currently!" self.group_ids = self.group_aspect(self.database) print('mask_raw_pixels: ', self.mask_raw_pixels) #FM: initialise vocabulary for output self.MLT_vocab_path = os.path.join(root_path, 'model/pretrained_model', MLT_vocab) self.MLT_vocab = [] with open(self.MLT_vocab_path) as fp: for cnt, line in enumerate(fp): self.MLT_vocab.append(line.strip()) @property def data_names(self): return ['image', 'boxes', 'im_info', 'text', 'relationship_label', 'mlm_labels', 'mvrc_ops', 'mvrc_labels'] def __getitem__(self, index): idb = self.database[index] # image data # IN ALL CASES: boxes and cls scores are available for each image frcnn_data = self._load_json(os.path.join(self.data_path, idb['frcnn'])) boxes = np.frombuffer(self.b64_decode(frcnn_data['boxes']), dtype=np.float32).reshape((frcnn_data['num_boxes'], -1)) boxes_cls_scores = np.frombuffer(self.b64_decode(frcnn_data['classes']), dtype=np.float32).reshape((frcnn_data['num_boxes'], -1)) boxes_max_conf = boxes_cls_scores.max(axis=1) inds = np.argsort(boxes_max_conf)[::-1] boxes = boxes[inds] boxes_cls_scores = boxes_cls_scores[inds] boxes = torch.as_tensor(boxes) # load precomputed features or the whole image depending on setup if self.with_precomputed_visual_feat: image = None w0, h0 = frcnn_data['image_w'], frcnn_data['image_h'] boxes_features = np.frombuffer(self.b64_decode(frcnn_data['features']), dtype=np.float32).reshape((frcnn_data['num_boxes'], -1)) boxes_features = boxes_features[inds] boxes_features = torch.as_tensor(boxes_features) else: try: image = self._load_image(os.path.join(self.data_path, idb['image'])) w0, h0 = image.size except: print("Failed to load image {}, use zero image!".format(idb['image'])) image = None w0, h0 = frcnn_data['image_w'], frcnn_data['image_h'] # append whole image to tensor of boxes (used for all linguistic tokens) if self.add_image_as_a_box: image_box = torch.as_tensor([[0.0, 0.0, w0 - 1.0, h0 - 1.0]]) boxes = torch.cat((image_box, boxes), dim=0) if self.with_precomputed_visual_feat: image_box_feat = boxes_features.mean(dim=0, keepdim=True) boxes_features = torch.cat((image_box_feat, boxes_features), dim=0) # transform im_info = torch.tensor([w0, h0, 1.0, 1.0, index]) if self.transform is not None: image, boxes, _, im_info = self.transform(image, boxes, None, im_info) if image is None and (not self.with_precomputed_visual_feat): w = int(im_info[0].item()) h = int(im_info[1].item()) image = im_info.new_zeros((3, h, w), dtype=torch.float) # clamp boxes w = im_info[0].item() h = im_info[1].item() boxes[:, [0, 2]] = boxes[:, [0, 2]].clamp(min=0, max=w-1) boxes[:, [1, 3]] = boxes[:, [1, 3]].clamp(min=0, max=h-1) # FM edit: remove - Task #1: Caption-Image Relationship Prediction word_en = idb['word_en'] word_de = idb['word_de'] caption_en = idb['caption_en'] caption_de = idb['caption_de'] # FM edit: add captions - tokenise words caption_tokens_en = self.tokenizer.tokenize(caption_en) # caption_tokens_de = self.tokenizer.tokenize(caption_de) word_tokens_en = self.tokenizer.tokenize(word_en) # word_tokens_de = self.tokenizer.tokenize(word_de) mlm_labels_en = [-1] * len(caption_tokens_en) mlm_labels_word_en = [-1] * len(caption_tokens_en) # mlm_labels_word_de = [-1] * len(caption_tokens_de) # mlm_labels_de = [-1] * len(caption_tokens_de) text_tokens = ['[CLS]'] + word_tokens_en + ['[SEP]'] + caption_tokens_en + ['[SEP]'] mlm_labels = [-1] + mlm_labels_word_en + [-1] + mlm_labels_en + [-1] # relationship label - not used relationship_label = 1 # Construct boxes mvrc_ops = [0] * boxes.shape[0] mvrc_labels = [np.zeros_like(boxes_cls_scores[0])] * boxes.shape[0] # store labels for masked regions mvrc_labels = np.stack(mvrc_labels, axis=0) # convert tokens to ids text = self.tokenizer.convert_tokens_to_ids(text_tokens) if self.with_precomputed_visual_feat: boxes = torch.cat((boxes, boxes_features), dim=1) # truncate seq to max len if len(text) + len(boxes) > self.seq_len: text_len_keep = len(text) box_len_keep = len(boxes) while (text_len_keep + box_len_keep) > self.seq_len and (text_len_keep > 0) and (box_len_keep > 0): if box_len_keep > text_len_keep: box_len_keep -= 1 else: text_len_keep -= 1 if text_len_keep < 2: text_len_keep = 2 if box_len_keep < 1: box_len_keep = 1 boxes = boxes[:box_len_keep] text = text[:(text_len_keep - 1)] + [text[-1]] mlm_labels = mlm_labels[:(text_len_keep - 1)] + [mlm_labels[-1]] mvrc_ops = mvrc_ops[:box_len_keep] mvrc_labels = mvrc_labels[:box_len_keep] return image, boxes, im_info, text, relationship_label, mlm_labels, mvrc_ops, mvrc_labels @staticmethod def b64_decode(string): return base64.decodebytes(string.encode()) @staticmethod def group_aspect(database): print('grouping aspect...') t = time.time() # get shape of all images widths = torch.as_tensor([idb['width'] for idb in database]) heights = torch.as_tensor([idb['height'] for idb in database]) # group group_ids = torch.zeros(len(database)) horz = widths >= heights vert = 1 - horz group_ids[horz] = 0 group_ids[vert] = 1 print('Done (t={:.2f}s)'.format(time.time() - t)) return group_ids def __len__(self): return len(self.database) def _load_image(self, path): if '.zip@' in path: return self.zipreader.imread(path).convert('RGB') else: return Image.open(path).convert('RGB') def _load_json(self, path): if '.zip@' in path: f = self.zipreader.read(path) return json.loads(f.decode()) else: with open(path, 'r') as f: return json.load(f)
class VRep(Dataset): def __init__(self, image_set, root_path, data_path, boxes='gt', proposal_source='official', transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, mask_size=(14, 14), aspect_grouping=False, **kwargs): """ VREP Dataset :param image_set: image folder name :param root_path: root path to cache database loaded from annotation file :param data_path: path to dataset :param boxes: boxes to use, 'gt' or 'proposal' :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param mask_size: size of instance mask of each object :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(VRep, self).__init__() assert not cache_mode, 'currently not support cache mode!' self.data_json = 'obj_det_res.json'#'image_seg_test.json'#'obj_det_res.json' self.ref_json = 'ref_annotations.json' self.boxes = boxes self.refer = Refer() self.test_mode = test_mode self.data_path = data_path self.root_path = root_path self.transform = transform self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box self.mask_size = mask_size if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) if zip_mode: self.zipreader = ZipReader() self.database = self.load_annotations() if self.aspect_grouping: self.group_ids = self.group_aspect(self.database) @property def data_names(self): if self.test_mode: return ['image', 'boxes', 'im_info', 'expression'] else: return ['image', 'boxes', 'im_info', 'expression', 'label'] def __getitem__(self, index): idb = self.database[index] #print(idb) # image related img_id = idb['image_id'] image = self._load_image(idb['image_fn']) im_info = torch.as_tensor([idb['width'], idb['height'], 1.0, 1.0]) if not self.test_mode: gt_box = torch.as_tensor(idb['gt_box']) flipped = False bb = self._load_json(os.path.join(self.data_path, 'bb.json')) if self.boxes == 'gt': boxes = torch.as_tensor(bb[img_id]) if self.add_image_as_a_box: w0, h0 = im_info[0], im_info[1] image_box = torch.as_tensor([[0.0, 0.0, w0 - 1, h0 - 1]]) boxes = torch.cat((image_box, boxes), dim=0) if self.transform is not None: if not self.test_mode: boxes = torch.cat((gt_box[None], boxes), 0) image, boxes, _, im_info, flipped = self.transform(image, boxes, None, im_info, flipped) if not self.test_mode: gt_box = boxes[0] boxes = boxes[1:] # clamp boxes w = im_info[0].item() h = im_info[1].item() boxes[:, [0, 2]] = boxes[:, [0, 2]].clamp(min=0, max=w - 1) boxes[:, [1, 3]] = boxes[:, [1, 3]].clamp(min=0, max=h - 1) if not self.test_mode: gt_box[[0, 2]] = gt_box[[0, 2]].clamp(min=0, max=w - 1) gt_box[[1, 3]] = gt_box[[1, 3]].clamp(min=0, max=h - 1) # assign label to each box by its IoU with gt_box if not self.test_mode: boxes_ious = bbox_iou_py_vectorized(boxes, gt_box[None]).view(-1) label = (boxes_ious > 0.5).float() # expression exp_tokens = idb['tokens'] exp_retokens = self.tokenizer.tokenize(' '.join(exp_tokens)) if flipped: exp_retokens = self.flip_tokens(exp_retokens, verbose=True) exp_ids = self.tokenizer.convert_tokens_to_ids(exp_retokens) if self.test_mode: return image, boxes, im_info, exp_ids else: return image, boxes, im_info, exp_ids, label @staticmethod def flip_tokens(tokens, verbose=True): changed = False tokens_new = [tok for tok in tokens] for i, tok in enumerate(tokens): if tok == 'left': tokens_new[i] = 'right' changed = True elif tok == 'right': tokens_new[i] = 'left' changed = True if verbose and changed: logging.info('[Tokens Flip] {} -> {}'.format(tokens, tokens_new)) return tokens_new @staticmethod def b64_decode(string): return base64.decodebytes(string.encode()) def load_annotations(self): tic = time.time() database = [] db_cache_name = 'vrep_boxes'#_{}_{}'.format(self.boxes, '+'.join(self.image_sets)) if self.zip_mode: db_cache_name = db_cache_name + '_zipmode' if self.test_mode: db_cache_name = db_cache_name + '_testmode' db_cache_root = os.path.join(self.root_path, 'cache') db_cache_path = os.path.join(db_cache_root, '{}.pkl'.format(db_cache_name)) dataset = self._load_json(os.path.join(self.data_path, self.data_json)) ref = self._load_json(os.path.join(self.data_path, self.ref_json)) if os.path.exists(db_cache_path): if not self.ignore_db_cache: # reading cached database print('cached database found in {}.'.format(db_cache_path)) with open(db_cache_path, 'rb') as f: print('loading cached database from {}...'.format(db_cache_path)) tic = time.time() database = cPickle.load(f) print('Done (t={:.2f}s)'.format(time.time() - tic)) return database else: print('cached database ignored.') # ignore or not find cached database, reload it from annotation file #print('loading database of split {}...'.format('+'.join(self.image_sets))) tic = time.time() refer_id = 0 for data_point in dataset['images']: iset = 'full_images' image_name = data_point['file_name'].split('/')[3] if True: for anno in data_point['annotations']: if anno['id'] == data_point['ground_truth']: gt_x, gt_y, gt_w, gt_h = anno['bbox'] if self.zip_mode: image_fn = os.path.join(self.data_path, iset + '.zip@/' + iset, image_name) else: image_fn = os.path.join(self.data_path, iset, image_name) for sent in ref[image_name]: idb = { #'sent_id': sent['sent_id'], #'ann_id': ref['ann_id'], 'ref_id': refer_id, 'image_id': image_name, 'image_fn': image_fn, 'width': 1024, 'height': 576, 'raw': sent, 'sent': sent, 'tokens': self.tokenizer.tokenize(sent), #'category_id': ref['category_id'], 'gt_box': [gt_x, gt_y, gt_x + gt_w, gt_y + gt_h] if not self.test_mode else None } self.refer.ref_id_to_box[refer_id] = [image_name, [gt_x, gt_y, gt_w, gt_h], sent] database.append(idb) refer_id += 1 with open('./final_refer_testset', 'w') as f: json.dump(self.refer.ref_id_to_box, f) print('Done (t={:.2f}s)'.format(time.time() - tic)) # cache database via cPickle if self.cache_db: print('caching database to {}...'.format(db_cache_path)) tic = time.time() if not os.path.exists(db_cache_root): makedirsExist(db_cache_root) with open(db_cache_path, 'wb') as f: cPickle.dump(database, f) print('Done (t={:.2f}s)'.format(time.time() - tic)) return database @staticmethod def group_aspect(database): print('grouping aspect...') t = time.time() # get shape of all images widths = torch.as_tensor([idb['width'] for idb in database]) heights = torch.as_tensor([idb['height'] for idb in database]) # group group_ids = torch.zeros(len(database)) horz = widths >= heights vert = 1 - horz group_ids[horz] = 0 group_ids[vert] = 1 print('Done (t={:.2f}s)'.format(time.time() - t)) return group_ids def __len__(self): return len(self.database) def _load_image(self, path): if '.zip@' in path: return self.zipreader.imread(path).convert('RGB') else: return Image.open(path).convert('RGB') def _load_json(self, path): if '.zip@' in path: f = self.zipreader.read(path) return json.loads(f.decode()) else: with open(path, 'r') as f: return json.load(f)
def __init__(self, ann_file, image_set, root_path, data_path, transform=None, task='Q2A', test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, basic_tokenizer=None, tokenizer=None, pretrained_model_name=None, only_use_relevant_dets=False, add_image_as_a_box=False, mask_size=(14, 14), aspect_grouping=False, basic_align=False, qa2r_noq=False, qa2r_aug=False, seq_len=64, **kwargs): """ Visual Commonsense Reasoning Dataset :param ann_file: annotation jsonl file :param image_set: image folder name, e.g., 'vcr1images' :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param task: 'Q2A' means question to answer, 'QA2R' means question and answer to rationale, 'Q2AR' means question to answer and rationale :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param only_use_relevant_dets: filter out detections not used in query and response :param add_image_as_a_box: add whole image as a box :param mask_size: size of instance mask of each object :param aspect_grouping: whether to group images via their aspect :param basic_align: align to tokens retokenized by basic_tokenizer :param qa2r_noq: in QA->R, the query contains only the correct answer, without question :param qa2r_aug: in QA->R, whether to augment choices to include those with wrong answer in query :param kwargs: """ super(VCRDataset, self).__init__() assert not cache_mode, 'currently not support cache mode!' assert task in ['Q2A', 'QA2R', 'Q2AR'] , 'not support task {}'.format(task) assert not qa2r_aug, "Not implemented!" self.qa2r_noq = qa2r_noq self.qa2r_aug = qa2r_aug self.seq_len = seq_len categories = ['__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'trafficlight', 'firehydrant', 'stopsign', 'parkingmeter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sportsball', 'kite', 'baseballbat', 'baseballglove', 'skateboard', 'surfboard', 'tennisracket', 'bottle', 'wineglass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hotdog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'pottedplant', 'bed', 'diningtable', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cellphone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddybear', 'hairdrier', 'toothbrush'] self.category_to_idx = {c: i for i, c in enumerate(categories)} self.data_path = data_path self.root_path = root_path self.ann_file = os.path.join(data_path, ann_file) self.image_set = image_set self.transform = transform self.task = task self.test_mode = test_mode self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.basic_align = basic_align print('Dataset Basic Align: {}'.format(self.basic_align)) self.cache_dir = os.path.join(root_path, 'cache') self.only_use_relevant_dets = only_use_relevant_dets self.add_image_as_a_box = add_image_as_a_box self.mask_size = mask_size if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.basic_tokenizer = basic_tokenizer if basic_tokenizer is not None \ else BasicTokenizer(do_lower_case=True) if tokenizer is None: if pretrained_model_name is None: pretrained_model_name = 'bert-base-uncased' if 'roberta' in pretrained_model_name: tokenizer = RobertaTokenizer.from_pretrained(pretrained_model_name, cache_dir=self.cache_dir) else: tokenizer = BertTokenizer.from_pretrained(pretrained_model_name, cache_dir=self.cache_dir) self.tokenizer = tokenizer if zip_mode: self.zipreader = ZipReader() self.database = self.load_annotations(self.ann_file) if self.aspect_grouping: assert False, "Not support aspect grouping now!" self.group_ids = self.group_aspect(self.database) self.person_name_id = 0
class VCRDataset(Dataset): def __init__(self, ann_file, image_set, root_path, data_path, transform=None, task='Q2A', test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, basic_tokenizer=None, tokenizer=None, pretrained_model_name=None, only_use_relevant_dets=False, add_image_as_a_box=False, mask_size=(14, 14), aspect_grouping=False, basic_align=False, qa2r_noq=False, qa2r_aug=False, seq_len=64, **kwargs): """ Visual Commonsense Reasoning Dataset :param ann_file: annotation jsonl file :param image_set: image folder name, e.g., 'vcr1images' :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param task: 'Q2A' means question to answer, 'QA2R' means question and answer to rationale, 'Q2AR' means question to answer and rationale :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param only_use_relevant_dets: filter out detections not used in query and response :param add_image_as_a_box: add whole image as a box :param mask_size: size of instance mask of each object :param aspect_grouping: whether to group images via their aspect :param basic_align: align to tokens retokenized by basic_tokenizer :param qa2r_noq: in QA->R, the query contains only the correct answer, without question :param qa2r_aug: in QA->R, whether to augment choices to include those with wrong answer in query :param kwargs: """ super(VCRDataset, self).__init__() assert not cache_mode, 'currently not support cache mode!' assert task in ['Q2A', 'QA2R', 'Q2AR'] , 'not support task {}'.format(task) assert not qa2r_aug, "Not implemented!" self.qa2r_noq = qa2r_noq self.qa2r_aug = qa2r_aug self.seq_len = seq_len categories = ['__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'trafficlight', 'firehydrant', 'stopsign', 'parkingmeter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sportsball', 'kite', 'baseballbat', 'baseballglove', 'skateboard', 'surfboard', 'tennisracket', 'bottle', 'wineglass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hotdog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'pottedplant', 'bed', 'diningtable', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cellphone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddybear', 'hairdrier', 'toothbrush'] self.category_to_idx = {c: i for i, c in enumerate(categories)} self.data_path = data_path self.root_path = root_path self.ann_file = os.path.join(data_path, ann_file) self.image_set = image_set self.transform = transform self.task = task self.test_mode = test_mode self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.basic_align = basic_align print('Dataset Basic Align: {}'.format(self.basic_align)) self.cache_dir = os.path.join(root_path, 'cache') self.only_use_relevant_dets = only_use_relevant_dets self.add_image_as_a_box = add_image_as_a_box self.mask_size = mask_size if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.basic_tokenizer = basic_tokenizer if basic_tokenizer is not None \ else BasicTokenizer(do_lower_case=True) if tokenizer is None: if pretrained_model_name is None: pretrained_model_name = 'bert-base-uncased' if 'roberta' in pretrained_model_name: tokenizer = RobertaTokenizer.from_pretrained(pretrained_model_name, cache_dir=self.cache_dir) else: tokenizer = BertTokenizer.from_pretrained(pretrained_model_name, cache_dir=self.cache_dir) self.tokenizer = tokenizer if zip_mode: self.zipreader = ZipReader() self.database = self.load_annotations(self.ann_file) if self.aspect_grouping: assert False, "Not support aspect grouping now!" self.group_ids = self.group_aspect(self.database) self.person_name_id = 0 def load_annotations(self, ann_file): tic = time.time() database = [] db_cache_name = 'vcr_nometa_{}_{}_{}'.format(self.task, self.image_set, os.path.basename(ann_file)[:-len('.jsonl')]) if self.only_use_relevant_dets: db_cache_name = db_cache_name + '_only_relevant_dets' if self.zip_mode: db_cache_name = db_cache_name + '_zipped' db_cache_root = os.path.join(self.root_path, 'cache') db_cache_path = os.path.join(db_cache_root, '{}.pkl'.format(db_cache_name)) if os.path.exists(db_cache_path): if not self.ignore_db_cache: # reading cached database print('cached database found in {}.'.format(db_cache_path)) with open(db_cache_path, 'rb') as f: print('loading cached database from {}...'.format(db_cache_path)) tic = time.time() database = cPickle.load(f) print('Done (t={:.2f}s)'.format(time.time() - tic)) return database else: print('cached database ignored.') # ignore or not find cached database, reload it from annotation file print('loading database from {}...'.format(ann_file)) tic = time.time() with jsonlines.open(ann_file) as reader: for ann in reader: if self.zip_mode: img_fn = os.path.join(self.data_path, self.image_set + '.zip@/' + self.image_set, ann['img_fn']) metadata_fn = os.path.join(self.data_path, self.image_set + '.zip@/' + self.image_set, ann['metadata_fn']) else: img_fn = os.path.join(self.data_path, self.image_set, ann['img_fn']) metadata_fn = os.path.join(self.data_path, self.image_set, ann['metadata_fn']) db_i = { 'annot_id': ann['annot_id'], 'objects': ann['objects'], 'img_fn': img_fn, 'metadata_fn': metadata_fn, 'question': ann['question'], 'answer_choices': ann['answer_choices'], 'answer_label': ann['answer_label'] if not self.test_mode else None, 'rationale_choices': ann['rationale_choices'], 'rationale_label': ann['rationale_label'] if not self.test_mode else None, } database.append(db_i) print('Done (t={:.2f}s)'.format(time.time() - tic)) # cache database via cPickle if self.cache_db: print('caching database to {}...'.format(db_cache_path)) tic = time.time() if not os.path.exists(db_cache_root): makedirsExist(db_cache_root) with open(db_cache_path, 'wb') as f: cPickle.dump(database, f) print('Done (t={:.2f}s)'.format(time.time() - tic)) return database @staticmethod def group_aspect(database): print('grouping aspect...') t = time.time() # get shape of all images widths = torch.as_tensor([idb['width'] for idb in database]) heights = torch.as_tensor([idb['height'] for idb in database]) # group group_ids = torch.zeros(len(database)) horz = widths >= heights vert = 1 - horz group_ids[horz] = 0 group_ids[vert] = 1 print('Done (t={:.2f}s)'.format(time.time() - t)) return group_ids def retokenize_and_convert_to_ids_with_tag(self, tokens, objects_replace_name, non_obj_tag=-1): parsed_tokens = [] tags = [] align_ids = [] raw = [] align_id = 0 for mixed_token in tokens: if isinstance(mixed_token, list): tokens = [objects_replace_name[o] for o in mixed_token] retokenized_tokens = self.tokenizer.tokenize(tokens[0]) raw.append(tokens[0]) tags.extend([mixed_token[0] + non_obj_tag + 1 for _ in retokenized_tokens]) align_ids.extend([align_id for _ in retokenized_tokens]) align_id += 1 for token, o in zip(tokens[1:], mixed_token[1:]): retokenized_tokens.append('and') tags.append(non_obj_tag) align_ids.append(align_id) align_id += 1 re_tokens = self.tokenizer.tokenize(token) retokenized_tokens.extend(re_tokens) tags.extend([o + non_obj_tag + 1 for _ in re_tokens]) align_ids.extend([align_id for _ in re_tokens]) align_id += 1 raw.extend(['and', token]) parsed_tokens.extend(retokenized_tokens) else: if self.basic_align: # basic align basic_tokens = self.basic_tokenizer.tokenize(mixed_token) raw.extend(basic_tokens) for t in basic_tokens: retokenized_tokens = self.tokenizer.tokenize(t) parsed_tokens.extend(retokenized_tokens) align_ids.extend([align_id for _ in retokenized_tokens]) tags.extend([non_obj_tag for _ in retokenized_tokens]) align_id += 1 else: # fully align to original tokens raw.append(mixed_token) retokenized_tokens = self.tokenizer.tokenize(mixed_token) parsed_tokens.extend(retokenized_tokens) align_ids.extend([align_id for _ in retokenized_tokens]) tags.extend([non_obj_tag for _ in retokenized_tokens]) align_id += 1 ids = self.tokenizer.convert_tokens_to_ids(parsed_tokens) ids_with_tag = list(zip(ids, tags, align_ids)) return ids_with_tag, raw @staticmethod def keep_only_relevant_dets(question, answer_choices, rationale_choices): dets_to_use = [] for i, tok in enumerate(question): if isinstance(tok, list): for j, o in enumerate(tok): if o not in dets_to_use: dets_to_use.append(o) question[i][j] = dets_to_use.index(o) if answer_choices is not None: for n, answer in enumerate(answer_choices): for i, tok in enumerate(answer): if isinstance(tok, list): for j, o in enumerate(tok): if o not in dets_to_use: dets_to_use.append(o) answer_choices[n][i][j] = dets_to_use.index(o) if rationale_choices is not None: for n, rationale in enumerate(rationale_choices): for i, tok in enumerate(rationale): if isinstance(tok, list): for j, o in enumerate(tok): if o not in dets_to_use: dets_to_use.append(o) rationale_choices[n][i][j] = dets_to_use.index(o) return dets_to_use, question, answer_choices, rationale_choices def __getitem__(self, index): # self.person_name_id = 0 idb = deepcopy(self.database[index]) metadata = self._load_json(idb['metadata_fn']) idb['boxes'] = metadata['boxes'] idb['segms'] = metadata['segms'] # idb['width'] = metadata['width'] # idb['height'] = metadata['height'] if self.only_use_relevant_dets: dets_to_use, idb['question'], idb['answer_choices'], idb['rationale_choices'] = \ self.keep_only_relevant_dets(idb['question'], idb['answer_choices'], idb['rationale_choices'] if not self.task == 'Q2A' else None) idb['objects'] = [idb['objects'][i] for i in dets_to_use] idb['boxes'] = [idb['boxes'][i] for i in dets_to_use] idb['segms'] = [idb['segms'][i] for i in dets_to_use] objects_replace_name = [] for o in idb['objects']: if o == 'person': objects_replace_name.append(GENDER_NEUTRAL_NAMES[self.person_name_id]) self.person_name_id = (self.person_name_id + 1) % len(GENDER_NEUTRAL_NAMES) else: objects_replace_name.append(o) non_obj_tag = 0 if self.add_image_as_a_box else -1 idb['question'] = self.retokenize_and_convert_to_ids_with_tag(idb['question'], objects_replace_name=objects_replace_name, non_obj_tag=non_obj_tag) idb['answer_choices'] = [self.retokenize_and_convert_to_ids_with_tag(answer, objects_replace_name=objects_replace_name, non_obj_tag=non_obj_tag) for answer in idb['answer_choices']] idb['rationale_choices'] = [self.retokenize_and_convert_to_ids_with_tag(rationale, objects_replace_name=objects_replace_name, non_obj_tag=non_obj_tag) for rationale in idb['rationale_choices']] if not self.task == 'Q2A' else None # truncate text to seq_len if self.task == 'Q2A': q = idb['question'][0] for a, a_raw in idb['answer_choices']: while len(q) + len(a) > self.seq_len: if len(a) > len(q): a.pop() else: q.pop() elif self.task == 'QA2R': if not self.test_mode: q = idb['question'][0] a = idb['answer_choices'][idb['answer_label']][0] for r, r_raw in idb['rationale_choices']: while len(q) + len(a) + len(r) > self.seq_len: if len(r) > (len(q) + len(a)): r.pop() elif len(q) > 1: q.pop() else: a.pop() else: raise NotImplemented image = self._load_image(idb['img_fn']) w0, h0 = image.size objects = idb['objects'] # extract bounding boxes and instance masks in metadata boxes = torch.zeros((len(objects), 6)) masks = torch.zeros((len(objects), *self.mask_size)) if len(objects) > 0: boxes[:, :5] = torch.tensor(idb['boxes']) boxes[:, 5] = torch.tensor([self.category_to_idx[obj] for obj in objects]) for i in range(len(objects)): seg_polys = [torch.as_tensor(seg) for seg in idb['segms'][i]] masks[i] = generate_instance_mask(seg_polys, idb['boxes'][i], mask_size=self.mask_size, dtype=torch.float32, copy=False) if self.add_image_as_a_box: image_box = torch.as_tensor([[0, 0, w0 - 1, h0 - 1, 1.0, 0]]) image_mask = torch.ones((1, *self.mask_size)) boxes = torch.cat((image_box, boxes), dim=0) masks = torch.cat((image_mask, masks), dim=0) question, question_raw = idb['question'] question_align_matrix = get_align_matrix([w[2] for w in question]) answer_choices, answer_choices_raw = zip(*idb['answer_choices']) answer_choices = list(answer_choices) answer_align_matrix = [get_align_matrix([w[2] for w in a]) for a in answer_choices] answer_label = torch.as_tensor(idb['answer_label']) if not self.test_mode else None if not self.task == 'Q2A': rationale_choices = [r[0] for r in idb['rationale_choices']] rationale_align_matrix = [get_align_matrix([w[2] for w in r]) for r in rationale_choices] rationale_label = torch.as_tensor(idb['rationale_label']) if not self.test_mode else None # transform im_info = torch.tensor([w0, h0, 1.0, 1.0, index]) if self.transform is not None: image, boxes, masks, im_info = self.transform(image, boxes, masks, im_info) # clamp boxes w = im_info[0].item() h = im_info[1].item() boxes[:, [0, 2]] = boxes[:, [0, 2]].clamp(min=0, max=w - 1) boxes[:, [1, 3]] = boxes[:, [1, 3]].clamp(min=0, max=h - 1) if self.task == 'Q2AR': if not self.test_mode: outputs = (image, boxes, masks, question, question_align_matrix, answer_choices, answer_align_matrix, answer_label, rationale_choices, rationale_align_matrix, rationale_label, im_info) else: outputs = (image, boxes, masks, question, question_align_matrix, answer_choices, answer_align_matrix, rationale_choices, rationale_align_matrix, im_info) elif self.task == 'Q2A': if not self.test_mode: outputs = (image, boxes, masks, question, question_align_matrix, answer_choices, answer_align_matrix, answer_label, im_info) else: outputs = (image, boxes, masks, question, question_align_matrix, answer_choices, answer_align_matrix, im_info) elif self.task == 'QA2R': if not self.test_mode: outputs = (image, boxes, masks, ([] if self.qa2r_noq else question) + answer_choices[answer_label], answer_align_matrix[answer_label] if self.qa2r_noq else block_digonal_matrix(question_align_matrix, answer_align_matrix[answer_label]), rationale_choices, rationale_align_matrix, rationale_label, im_info) else: outputs = (image, boxes, masks, [([] if self.qa2r_noq else question) + a for a in answer_choices], [m if self.qa2r_noq else block_digonal_matrix(question_align_matrix, m) for m in answer_align_matrix], rationale_choices, rationale_align_matrix, im_info) return outputs def __len__(self): return len(self.database) def _load_image(self, path): if '.zip@' in path: return self.zipreader.imread(path) else: return Image.open(path) def _load_json(self, path): if '.zip@' in path: f = self.zipreader.read(path) return json.loads(f.decode()) else: with open(path, 'r') as f: return json.load(f) @property def data_names(self): if not self.test_mode: if self.task == 'Q2A': data_names = ['image', 'boxes', 'masks', 'question', 'question_align_matrix', 'answer_choices', 'answer_align_matrix', 'answer_label', 'im_info'] elif self.task == 'QA2R': data_names = ['image', 'boxes', 'masks', 'question', 'question_align_matrix', 'rationale_choices', 'rationale_align_matrix', 'rationale_label', 'im_info'] else: data_names = ['image', 'boxes', 'masks', 'question', 'question_align_matrix', 'answer_choices', 'answer_align_matrix', 'answer_label', 'rationale_choices', 'rationale_align_matrix', 'rationale_label', 'im_info'] else: if self.task == 'Q2A': data_names = ['image', 'boxes', 'masks', 'question', 'question_align_matrix', 'answer_choices', 'answer_align_matrix', 'im_info'] elif self.task == 'QA2R': data_names = ['image', 'boxes', 'masks', 'question', 'question_align_matrix', 'rationale_choices', 'rationale_align_matrix', 'im_info'] else: data_names = ['image', 'boxes', 'masks', 'question', 'question_align_matrix', 'answer_choices', 'answer_align_matrix', 'rationale_choices', 'rationale_align_matrix', 'im_info'] return data_names
def __init__(self, captions_set, ann_file, roi_set, image_set, root_path, data_path, small_version=False, negative_sampling='hard', phrase_cls=True, transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, basic_tokenizer=None, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=True, on_memory=False, **kwargs): """ Visual Grounded Paraphrase Dataset :param ann_file: annotation csv file :param image_set: image folder name, e.g., 'vcr1images' :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param test_mode: test mode means no labels available :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param kwargs: """ super(VGPDataset, self).__init__() # temperarily enable cache mode and see if it works # assert not cache_mode, 'currently not support cache mode!' self.data_path = data_path self.root_path = root_path self.captions_set = os.path.join(data_path, captions_set) self.ann_file = os.path.join(data_path, ann_file) self.roi_set = os.path.join(data_path, roi_set) self.image_set = os.path.join(self.data_path, image_set) self.small = small_version self.neg_sampling = negative_sampling self.phrase_cls = phrase_cls self.transform = transform self.test_mode = test_mode self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box self.on_memory = False # mode True doesn't work if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.basic_tokenizer = basic_tokenizer if basic_tokenizer is not None \ else BasicTokenizer(do_lower_case=True) if tokenizer is None: if pretrained_model_name is None: pretrained_model_name = 'bert-base-uncased' if 'roberta' in pretrained_model_name: tokenizer = RobertaTokenizer.from_pretrained( pretrained_model_name) else: tokenizer = BertTokenizer.from_pretrained( pretrained_model_name) self.tokenizer = tokenizer if zip_mode: self.zipreader = ZipReader() self.database = self.load_captions(self.captions_set)
def __init__(self, ann_file, image_set, root_path, data_path, seq_len=64, with_precomputed_visual_feat=False, mask_raw_pixels=True, with_rel_task=True, with_mlm_task=False, with_mvrc_task=False, transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, aspect_grouping=False, languages_used='first', **kwargs): """ Conceptual Captions Dataset :param ann_file: annotation jsonl file :param image_set: image folder name, e.g., 'vcr1images' :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(Multi30kDataset_5x_Mixed, self).__init__() assert not cache_mode, 'currently not support cache mode!' # TODO: need to remove this to allows testing # assert not test_mode annot = {'train': 'train_frcnn_5captions_both.json', 'val': 'val_frcnn.json', 'test2015': 'test_frcnn.json'} self.seq_len = seq_len self.with_rel_task = with_rel_task self.with_mlm_task = with_mlm_task self.with_mvrc_task = with_mvrc_task self.data_path = data_path self.root_path = root_path self.ann_file = os.path.join(data_path, annot[image_set]) self.with_precomputed_visual_feat = with_precomputed_visual_feat self.mask_raw_pixels = mask_raw_pixels self.image_set = image_set self.transform = transform self.test_mode = test_mode self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping #FM edit: added option for how many captions self.languages_used = languages_used self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) self.zipreader = ZipReader() # FM: Customise for multi30k dataset if not self.test_mode: self.database = list(jsonlines.open(self.ann_file)) db_size = len(self.database) print('**************') print('Size before: ', db_size) if not self.zip_mode: for i, idb in enumerate(self.database): self.database[i]['frcnn'] = idb['frcnn'].replace('.zip@', '')\ .replace('.0', '').replace('.1', '').replace('.2', '').replace('.3', '') self.database[i]['image'] = idb['image'].replace('.zip@', '') # double database - one is used for english one for german database_2 = copy.deepcopy(self.database) self.database = self.database + database_2 print('**************') print('Size after: ', len(self.database)) for i, idb in enumerate(self.database): if i<db_size: self.database[i]['lang'] = 'first' else: self.database[i]['lang'] = 'second' # FM edit: create dataset for test mode else: self.simple_database = list(jsonlines.open(self.ann_file)) if not self.zip_mode: for i, idb in enumerate(self.simple_database): self.simple_database[i]['frcnn'] = idb['frcnn'].replace('.zip@', '')\ .replace('.0', '').replace('.1', '').replace('.2', '').replace('.3', '') self.simple_database[i]['image'] = idb['image'].replace('.zip@', '') # create database cross-coupling each caption with all images self.database = [] db_index = 0 for x, idb_x in enumerate(self.simple_database): for y, idb_y in enumerate(self.simple_database): self.database.append({}) self.database[db_index]['label'] = 1.0 if x==y else 0.0 self.database[db_index]['caption_en'] = self.simple_database[x]['caption_en'] self.database[db_index]['caption_de'] = self.simple_database[x]['caption_de'] self.database[db_index]['image'] = self.simple_database[y]['image'] self.database[db_index]['frcnn'] = self.simple_database[y]['frcnn'] self.database[db_index]['caption_index'] = x self.database[db_index]['image_index'] = y db_index += 1 if self.aspect_grouping: assert False, "not support aspect grouping currently!" self.group_ids = self.group_aspect(self.database) print('mask_raw_pixels: ', self.mask_raw_pixels)
class Distance_Translation_Multi30kDataset(Dataset): def __init__(self, ann_file, image_set, root_path, data_path, seq_len=64, with_precomputed_visual_feat=False, mask_raw_pixels=True, with_rel_task=True, with_mlm_task=False, with_mvrc_task=False, transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, aspect_grouping=False, languages_used='first', **kwargs): """ Conceptual Captions Dataset :param ann_file: annotation jsonl file :param image_set: image folder name, e.g., 'vcr1images' :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(Distance_Translation_Multi30kDataset, self).__init__() assert not cache_mode, 'currently not support cache mode!' # TODO: need to remove this to allows testing # assert not test_mode annot = { 'train': 'train.json', 'val': 'val.json', 'test2015': 'test.json' } self.seq_len = seq_len self.with_rel_task = with_rel_task self.with_mlm_task = with_mlm_task self.with_mvrc_task = with_mvrc_task self.data_path = data_path self.root_path = root_path self.ann_file = os.path.join(data_path, annot[image_set]) self.with_precomputed_visual_feat = with_precomputed_visual_feat self.mask_raw_pixels = mask_raw_pixels self.image_set = image_set self.transform = transform self.test_mode = test_mode self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping #FM edit: added option for how many captions self.languages_used = languages_used self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) self.zipreader = ZipReader() # FM: Customise for multi30k dataset - only used for inference self.database = list(jsonlines.open(self.ann_file)) # if not self.test_mode: # self.database = list(jsonlines.open(self.ann_file)) # # FM edit: create dataset for test mode # else: # self.simple_database = list(jsonlines.open(self.ann_file)) # # create database cross-coupling each caption_en with all captions_de # self.database = [] # db_index = 0 # for x, idb_x in enumerate(self.simple_database): # for y, idb_y in enumerate(self.simple_database): # self.database.append({}) # self.database[db_index]['label'] = 1.0 if x==y else 0.0 # self.database[db_index]['caption_en'] = self.simple_database[x]['caption_en'] # self.database[db_index]['caption_de'] = self.simple_database[y]['caption_de'] # self.database[db_index]['caption_en_index'] = x # self.database[db_index]['caption_de_index'] = y # db_index += 1 if self.aspect_grouping: assert False, "not support aspect grouping currently!" self.group_ids = self.group_aspect(self.database) print('mask_raw_pixels: ', self.mask_raw_pixels) @property def data_names(self): return ['text', 'relationship_label', 'mlm_labels'] def __getitem__(self, index): idb = self.database[index] # # indeces for inference # caption_en_index = idb['caption_en_index'] if self.test_mode else 0 # caption_de_index = idb['caption_de_index'] if self.test_mode else 0 # Task #1: Caption-Image Relationship Prediction _p = random.random() if not self.test_mode: if _p < 0.5: relationship_label = 1.0 caption_en = idb['caption_en'] caption_de = idb['caption_de'] else: relationship_label = 0.0 rand_index = random.randrange(0, len(self.database)) while rand_index == index: rand_index = random.randrange(0, len(self.database)) # caption_en and image match, german caption is random caption_en = idb['caption_en'] caption_de = self.database[rand_index]['caption_de'] # for inference else: relationship_label = 1 caption_en = idb['caption_en'] caption_de = idb['caption_de'] # FM edit: add captions caption_tokens_en = self.tokenizer.tokenize(caption_en) caption_tokens_de = self.tokenizer.tokenize(caption_de) mlm_labels_en = [-1] * len(caption_tokens_en) mlm_labels_de = [-1] * len(caption_tokens_de) # FM edit: captions of both languages exist in all cases if self.languages_used == 'first': text_tokens = ['[CLS]'] + caption_tokens_en + ['[SEP]'] mlm_labels = [-1] + mlm_labels_en + [-1] elif self.languages_used == 'second': text_tokens = ['[CLS]'] + caption_tokens_de + ['[SEP]'] mlm_labels = [-1] + mlm_labels_de + [-1] else: text_tokens = ['[CLS]'] + caption_tokens_en + [ '[SEP]' ] + caption_tokens_de + ['[SEP]'] mlm_labels = [-1] + mlm_labels_en + [-1] + mlm_labels_de + [-1] # convert tokens to ids text = self.tokenizer.convert_tokens_to_ids(text_tokens) # truncate seq to max len if len(text) > self.seq_len: text_len_keep = len(text) while (text_len_keep) > self.seq_len and (text_len_keep > 0): text_len_keep -= 1 if text_len_keep < 2: text_len_keep = 2 text = text[:(text_len_keep - 1)] + [text[-1]] return text, relationship_label, mlm_labels @staticmethod def b64_decode(string): return base64.decodebytes(string.encode()) @staticmethod def group_aspect(database): print('grouping aspect...') t = time.time() # get shape of all images widths = torch.as_tensor([idb['width'] for idb in database]) heights = torch.as_tensor([idb['height'] for idb in database]) # group group_ids = torch.zeros(len(database)) horz = widths >= heights vert = 1 - horz group_ids[horz] = 0 group_ids[vert] = 1 print('Done (t={:.2f}s)'.format(time.time() - t)) return group_ids def __len__(self): return len(self.database) def _load_image(self, path): if '.zip@' in path: return self.zipreader.imread(path).convert('RGB') else: return Image.open(path).convert('RGB') def _load_json(self, path): if '.zip@' in path: f = self.zipreader.read(path) return json.loads(f.decode()) else: with open(path, 'r') as f: return json.load(f)
class VQA_CP(Dataset): def __init__(self, image_set, root_path, data_path, answer_vocab_file, use_imdb=True, with_precomputed_visual_feat=False, boxes="36", transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=True, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, mask_size=(14, 14), aspect_grouping=False, toy_dataset=False, toy_samples=128, **kwargs): """ Visual Question Answering Dataset :param image_set: image folder name :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param mask_size: size of instance mask of each object :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(VQA_CP, self).__init__() assert not cache_mode, 'currently not support cache mode!' categories = ['__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'trafficlight', 'firehydrant', 'stopsign', 'parkingmeter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sportsball', 'kite', 'baseballbat', 'baseballglove', 'skateboard', 'surfboard', 'tennisracket', 'bottle', 'wineglass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hotdog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'pottedplant', 'bed', 'diningtable', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cellphone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddybear', 'hairdrier', 'toothbrush'] vqa_question = { "train": "vqa/vqacp_v2_train_questions.json", "val": "vqa/vqacp_v2_test_questions.json", } vqa_annot = { "train": "vqa/vqacp_v2_train_annotations.json", "val": "vqa/vqacp_v2_test_annotations.json", } if boxes == "36": precomputed_boxes = { 'train': ("vgbua_res101_precomputed", "{}_resnet101_faster_rcnn_genome_36"), 'val': ("vgbua_res101_precomputed", "{}_resnet101_faster_rcnn_genome_36"), } elif boxes == "10-100ada": precomputed_boxes = { 'train': ("vgbua_res101_precomputed", "{}_resnet101_faster_rcnn_genome"), 'val': ("vgbua_res101_precomputed", "{}_resnet101_faster_rcnn_genome"), } else: raise ValueError("Not support boxes: {}!".format(boxes)) self.coco_dataset = { "train2014": os.path.join(data_path, "annotations", "instances_train2014.json"), "val2014": os.path.join(data_path, "annotations", "instances_val2014.json"), "test-dev2015": os.path.join(data_path, "annotations", "image_info_test-dev2015.json"), "test2015": os.path.join(data_path, "annotations", "image_info_test2015.json"), } self.periodStrip = re.compile("(?!<=\d)(\.)(?!\d)") self.commaStrip = re.compile("(\d)(\,)(\d)") self.punct = [';', r"/", '[', ']', '"', '{', '}', '(', ')', '=', '+', '\\', '_', '-', '>', '<', '@', '`', ',', '?', '!'] self.boxes = boxes self.test_mode = test_mode self.with_precomputed_visual_feat = with_precomputed_visual_feat self.category_to_idx = {c: i for i, c in enumerate(categories)} self.data_path = data_path self.root_path = root_path # load the answer vocab file: same as vqav2 dataset with open(answer_vocab_file, 'r', encoding='utf8') as f: self.answer_vocab = [w.lower().strip().strip('\r').strip('\n').strip('\r') for w in f.readlines()] self.answer_vocab = list(filter(lambda x: x != '', self.answer_vocab)) self.answer_vocab = [self.processPunctuation(w) for w in self.answer_vocab] # The config.DATA.TRAIN_IMAGE_SET and config.DATA.VAL_IMAGE_SET have # a little different use here, it indicates the mode 'train' or 'val' self.image_sets = [iset.strip() for iset in image_set.split('+')] self.ann_files = [os.path.join(data_path, vqa_annot[iset]) for iset in self.image_sets] \ if not self.test_mode else [None for iset in self.image_sets] self.q_files = [os.path.join(data_path, vqa_question[iset]) for iset in self.image_sets] self.precomputed_box_files = [ os.path.join(data_path, precomputed_boxes[iset][0], precomputed_boxes[iset][1]) for iset in self.image_sets] self.box_bank = {} self.coco_datasets = [os.path.join(data_path, '{}', 'COCO_{}_{{:012d}}.jpg') for iset in self.image_sets] self.transform = transform self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box self.mask_size = mask_size if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) if zip_mode: self.zipreader = ZipReader() self.database = self.load_annotations() if self.aspect_grouping: self.group_ids = self.group_aspect(self.database) # toy dataset if toy_dataset: print(f"Using the toy dataset!! Total samples = {toy_samples}") self.database = self.database[:toy_samples] @property def data_names(self): if self.test_mode: return ['image', 'boxes', 'im_info', 'question'] else: return ['image', 'boxes', 'im_info', 'question', 'label'] def __getitem__(self, index): idb = self.database[index] # image, boxes, im_info boxes_data = self._load_json(idb['box_fn']) if self.with_precomputed_visual_feat: image = None w0, h0 = idb['width'], idb['height'] boxes_features = torch.as_tensor( np.frombuffer(self.b64_decode(boxes_data['features']), dtype=np.float32).reshape((boxes_data['num_boxes'], -1)) ) else: image = self._load_image(idb['image_fn']) w0, h0 = image.size boxes = torch.as_tensor( np.frombuffer(self.b64_decode(boxes_data['boxes']), dtype=np.float32).reshape( (boxes_data['num_boxes'], -1)) ) if self.add_image_as_a_box: image_box = torch.as_tensor([[0.0, 0.0, w0 - 1, h0 - 1]]) boxes = torch.cat((image_box, boxes), dim=0) if self.with_precomputed_visual_feat: if 'image_box_feature' in boxes_data: image_box_feature = torch.as_tensor( np.frombuffer( self.b64_decode(boxes_data['image_box_feature']), dtype=np.float32 ).reshape((1, -1)) ) else: image_box_feature = boxes_features.mean(0, keepdim=True) boxes_features = torch.cat((image_box_feature, boxes_features), dim=0) im_info = torch.tensor([w0, h0, 1.0, 1.0]) flipped = False if self.transform is not None: image, boxes, _, im_info, flipped = self.transform(image, boxes, None, im_info, flipped) # clamp boxes w = im_info[0].item() h = im_info[1].item() boxes[:, [0, 2]] = boxes[:, [0, 2]].clamp(min=0, max=w - 1) boxes[:, [1, 3]] = boxes[:, [1, 3]].clamp(min=0, max=h - 1) # flip: 'left' -> 'right', 'right' -> 'left' q_tokens = self.tokenizer.tokenize(idb['question']) if flipped: q_tokens = self.flip_tokens(q_tokens, verbose=False) if not self.test_mode: answers = idb['answers'] if flipped: answers_tokens = [a.split(' ') for a in answers] answers_tokens = [self.flip_tokens(a_toks, verbose=False) for a_toks in answers_tokens] answers = [' '.join(a_toks) for a_toks in answers_tokens] label = self.get_soft_target(answers) # question q_retokens = q_tokens q_ids = self.tokenizer.convert_tokens_to_ids(q_retokens) # concat box feature to box if self.with_precomputed_visual_feat: boxes = torch.cat((boxes, boxes_features), dim=-1) if self.test_mode: return image, boxes, im_info, q_ids else: # print([(self.answer_vocab[i], p.item()) for i, p in enumerate(label) if p.item() != 0]) return image, boxes, im_info, q_ids, label @staticmethod def flip_tokens(tokens, verbose=True): changed = False tokens_new = [tok for tok in tokens] for i, tok in enumerate(tokens): if tok == 'left': tokens_new[i] = 'right' changed = True elif tok == 'right': tokens_new[i] = 'left' changed = True if verbose and changed: logging.info('[Tokens Flip] {} -> {}'.format(tokens, tokens_new)) return tokens_new @staticmethod def b64_decode(string): return base64.decodebytes(string.encode()) def answer_to_ind(self, answer): if answer in self.answer_vocab: return self.answer_vocab.index(answer) else: return self.answer_vocab.index('<unk>') def get_soft_target(self, answers): soft_target = torch.zeros(len(self.answer_vocab), dtype=torch.float) answer_indices = [self.answer_to_ind(answer) for answer in answers] gt_answers = list(enumerate(answer_indices)) unique_answers = set(answer_indices) for answer in unique_answers: accs = [] for gt_answer in gt_answers: other_answers = [item for item in gt_answers if item != gt_answer] matching_answers = [item for item in other_answers if item[1] == answer] acc = min(1, float(len(matching_answers)) / 3) accs.append(acc) avg_acc = sum(accs) / len(accs) if answer != self.answer_vocab.index('<unk>'): soft_target[answer] = avg_acc return soft_target def processPunctuation(self, inText): if inText == '<unk>': return inText outText = inText for p in self.punct: if (p + ' ' in inText or ' ' + p in inText) or (re.search(self.commaStrip, inText) != None): outText = outText.replace(p, '') else: outText = outText.replace(p, ' ') outText = self.periodStrip.sub("", outText, re.UNICODE) return outText def load_annotations(self): tic = time.time() database = [] db_cache_name = 'vqa_cp2_boxes{}_{}'.format(self.boxes, '+'.join(self.image_sets)) if self.with_precomputed_visual_feat: db_cache_name += 'visualprecomp' if self.zip_mode: db_cache_name = db_cache_name + '_zipmode' if self.test_mode: db_cache_name = db_cache_name + '_testmode' db_cache_root = os.path.join(self.root_path, 'cache') db_cache_path = os.path.join(db_cache_root, '{}.pkl'.format(db_cache_name)) if os.path.exists(db_cache_path): if not self.ignore_db_cache: # reading cached database print('cached database found in {}.'.format(db_cache_path)) with open(db_cache_path, 'rb') as f: print('loading cached database from {}...'.format(db_cache_path)) tic = time.time() database = cPickle.load(f) print('Done (t={:.2f}s)'.format(time.time() - tic)) return database else: print('cached database ignored.') # ignore or not find cached database, reload it from annotation file print('loading database of split {}...'.format('+'.join(self.image_sets))) tic = time.time() for ann_file, q_file, coco_path, box_file \ in zip(self.ann_files, self.q_files, self.coco_datasets, self.precomputed_box_files): qs = self._load_json(q_file) anns = self._load_json(ann_file) if not self.test_mode else ([None] * len(qs)) # we need to create 3 coco objects coco_train2014 = COCO(self.coco_dataset['train2014']) coco_val2014 = COCO(self.coco_dataset['val2014']) coco_test2015 = COCO(self.coco_dataset['test2015']) for ann, q in zip(anns, qs): if q['coco_split'] == 'train2014': coco_obj = coco_train2014 box_dir = 'trainval2014' elif q['coco_split'] == 'val2014': coco_obj = coco_val2014 box_dir = 'trainval2014' elif q['coco_split'] == 'test2015': coco_obj = coco_test2015 box_dir = 'test2015' else: raise ValueError("COCO split in question : {} not supported".format(q['coco_split'])) idb = {'image_id': q['image_id'], 'image_fn': coco_path.format(q['coco_split'], q['coco_split'], q['image_id']), 'width': coco_obj.imgs[q['image_id']]['width'], 'height': coco_obj.imgs[q['image_id']]['height'], 'box_fn': os.path.join(box_file.format(box_dir), '{}.json'.format(q['image_id'])), 'question_id': q['question_id'], 'question': q['question'], 'answers': [a['answer'] for a in ann['answers']] if not self.test_mode else None, 'multiple_choice_answer': ann['multiple_choice_answer'] if not self.test_mode else None, "question_type": ann['question_type'] if not self.test_mode else None, "answer_type": ann['answer_type'] if not self.test_mode else None, } database.append(idb) print('Done (t={:.2f}s)'.format(time.time() - tic)) # cache database via cPickle if self.cache_db: print('caching database to {}...'.format(db_cache_path)) tic = time.time() if not os.path.exists(db_cache_root): makedirsExist(db_cache_root) with open(db_cache_path, 'wb') as f: cPickle.dump(database, f) print('Done (t={:.2f}s)'.format(time.time() - tic)) return database @staticmethod def group_aspect(database): print('grouping aspect...') t = time.time() # get shape of all images widths = torch.as_tensor([idb['width'] for idb in database]) heights = torch.as_tensor([idb['height'] for idb in database]) # group group_ids = torch.zeros(len(database)) horz = widths >= heights vert = 1 - horz group_ids[horz] = 0 group_ids[vert] = 1 print('Done (t={:.2f}s)'.format(time.time() - t)) return group_ids def load_precomputed_boxes(self, box_file): if box_file in self.box_bank: return self.box_bank[box_file] else: in_data = {} with open(box_file, "r") as tsv_in_file: reader = csv.DictReader(tsv_in_file, delimiter='\t', fieldnames=FIELDNAMES) for item in reader: item['image_id'] = int(item['image_id']) item['image_h'] = int(item['image_h']) item['image_w'] = int(item['image_w']) item['num_boxes'] = int(item['num_boxes']) for field in (['boxes', 'features'] if self.with_precomputed_visual_feat else ['boxes']): item[field] = np.frombuffer(base64.decodebytes(item[field].encode()), dtype=np.float32).reshape((item['num_boxes'], -1)) in_data[item['image_id']] = item self.box_bank[box_file] = in_data return in_data def __len__(self): return len(self.database) def _load_image(self, path): if '.zip@' in path: return self.zipreader.imread(path).convert('RGB') else: return Image.open(path).convert('RGB') def _load_json(self, path): if '.zip@' in path: f = self.zipreader.read(path) return json.loads(f.decode()) else: with open(path, 'r') as f: return json.load(f)
def __init__(self, image_set, root_path, data_path, answer_vocab_file, use_imdb=True, with_precomputed_visual_feat=False, boxes="36", transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=True, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, mask_size=(14, 14), aspect_grouping=False, toy_dataset=False, toy_samples=128, **kwargs): """ Visual Question Answering Dataset :param image_set: image folder name :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param mask_size: size of instance mask of each object :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(VQA_CP, self).__init__() assert not cache_mode, 'currently not support cache mode!' categories = ['__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'trafficlight', 'firehydrant', 'stopsign', 'parkingmeter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sportsball', 'kite', 'baseballbat', 'baseballglove', 'skateboard', 'surfboard', 'tennisracket', 'bottle', 'wineglass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hotdog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'pottedplant', 'bed', 'diningtable', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cellphone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddybear', 'hairdrier', 'toothbrush'] vqa_question = { "train": "vqa/vqacp_v2_train_questions.json", "val": "vqa/vqacp_v2_test_questions.json", } vqa_annot = { "train": "vqa/vqacp_v2_train_annotations.json", "val": "vqa/vqacp_v2_test_annotations.json", } if boxes == "36": precomputed_boxes = { 'train': ("vgbua_res101_precomputed", "{}_resnet101_faster_rcnn_genome_36"), 'val': ("vgbua_res101_precomputed", "{}_resnet101_faster_rcnn_genome_36"), } elif boxes == "10-100ada": precomputed_boxes = { 'train': ("vgbua_res101_precomputed", "{}_resnet101_faster_rcnn_genome"), 'val': ("vgbua_res101_precomputed", "{}_resnet101_faster_rcnn_genome"), } else: raise ValueError("Not support boxes: {}!".format(boxes)) self.coco_dataset = { "train2014": os.path.join(data_path, "annotations", "instances_train2014.json"), "val2014": os.path.join(data_path, "annotations", "instances_val2014.json"), "test-dev2015": os.path.join(data_path, "annotations", "image_info_test-dev2015.json"), "test2015": os.path.join(data_path, "annotations", "image_info_test2015.json"), } self.periodStrip = re.compile("(?!<=\d)(\.)(?!\d)") self.commaStrip = re.compile("(\d)(\,)(\d)") self.punct = [';', r"/", '[', ']', '"', '{', '}', '(', ')', '=', '+', '\\', '_', '-', '>', '<', '@', '`', ',', '?', '!'] self.boxes = boxes self.test_mode = test_mode self.with_precomputed_visual_feat = with_precomputed_visual_feat self.category_to_idx = {c: i for i, c in enumerate(categories)} self.data_path = data_path self.root_path = root_path # load the answer vocab file: same as vqav2 dataset with open(answer_vocab_file, 'r', encoding='utf8') as f: self.answer_vocab = [w.lower().strip().strip('\r').strip('\n').strip('\r') for w in f.readlines()] self.answer_vocab = list(filter(lambda x: x != '', self.answer_vocab)) self.answer_vocab = [self.processPunctuation(w) for w in self.answer_vocab] # The config.DATA.TRAIN_IMAGE_SET and config.DATA.VAL_IMAGE_SET have # a little different use here, it indicates the mode 'train' or 'val' self.image_sets = [iset.strip() for iset in image_set.split('+')] self.ann_files = [os.path.join(data_path, vqa_annot[iset]) for iset in self.image_sets] \ if not self.test_mode else [None for iset in self.image_sets] self.q_files = [os.path.join(data_path, vqa_question[iset]) for iset in self.image_sets] self.precomputed_box_files = [ os.path.join(data_path, precomputed_boxes[iset][0], precomputed_boxes[iset][1]) for iset in self.image_sets] self.box_bank = {} self.coco_datasets = [os.path.join(data_path, '{}', 'COCO_{}_{{:012d}}.jpg') for iset in self.image_sets] self.transform = transform self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box self.mask_size = mask_size if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) if zip_mode: self.zipreader = ZipReader() self.database = self.load_annotations() if self.aspect_grouping: self.group_ids = self.group_aspect(self.database) # toy dataset if toy_dataset: print(f"Using the toy dataset!! Total samples = {toy_samples}") self.database = self.database[:toy_samples]
class COCOCaptionsDataset(Dataset): def __init__(self, ann_file, image_set, root_path, data_path, seq_len=64, with_precomputed_visual_feat=False, mask_raw_pixels=True, with_rel_task=True, with_mlm_task=True, with_mvrc_task=True, transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, aspect_grouping=False, **kwargs): """ Conceptual Captions Dataset :param ann_file: annotation jsonl file :param image_set: image folder name, e.g., 'vcr1images' :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(COCOCaptionsDataset, self).__init__() assert not cache_mode, 'currently not support cache mode!' assert not test_mode annot = { 'train': 'annotations/captions_train2017.json', 'val': 'annotations/captions_val2017.json' } annot_inst = { 'train': 'annotations/instances_train2017.json', 'val': 'annotations/instances_val2017.json' } if zip_mode: self.root = os.path.join(data_path, '{0}2017.zip@/{0}2017'.format(image_set)) else: self.root = os.path.join(data_path, '{}2017'.format(image_set)) self.seq_len = seq_len self.with_rel_task = with_rel_task self.with_mlm_task = with_mlm_task self.with_mvrc_task = with_mvrc_task self.data_path = data_path self.root_path = root_path self.ann_file = os.path.join(data_path, annot[image_set]) self.ann_file_inst = os.path.join(data_path, annot_inst[image_set]) self.with_precomputed_visual_feat = with_precomputed_visual_feat self.mask_raw_pixels = mask_raw_pixels self.image_set = image_set self.transform = transform self.test_mode = test_mode self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) if self.zip_mode: self.zipreader = ZipReader() self.coco = COCO(self.ann_file) self.coco_inst = COCO(self.ann_file_inst) self.ids = list(sorted(self.coco.imgs.keys())) # filter images without detection annotations self.ids = [ img_id for img_id in self.ids if len(self.coco_inst.getAnnIds(imgIds=img_id, iscrowd=None)) > 0 ] self.json_category_id_to_contiguous_id = { v: i + 1 for i, v in enumerate(self.coco_inst.getCatIds()) } self.contiguous_category_id_to_json_id = { v: k for k, v in self.json_category_id_to_contiguous_id.items() } self.id_to_img_map = {k: v for k, v in enumerate(self.ids)} if self.aspect_grouping: assert False, "not support aspect grouping currently!" # self.group_ids = self.group_aspect(self.database) print('mask_raw_pixels: ', self.mask_raw_pixels) @property def data_names(self): return [ 'image', 'boxes', 'im_info', 'text', 'relationship_label', 'mlm_labels', 'mvrc_ops', 'mvrc_labels' ] def __getitem__(self, index): img_id = self.ids[index] # image data # frcnn_data = self._load_json(os.path.join(self.data_path, idb['frcnn'])) # boxes = np.frombuffer(self.b64_decode(frcnn_data['boxes']), # dtype=np.float32).reshape((frcnn_data['num_boxes'], -1)) # boxes_cls_scores = np.frombuffer(self.b64_decode(frcnn_data['classes']), # dtype=np.float32).reshape((frcnn_data['num_boxes'], -1)) # boxes_max_conf = boxes_cls_scores.max(axis=1) # inds = np.argsort(boxes_max_conf)[::-1] # boxes = boxes[inds] # boxes_cls_scores = boxes_cls_scores[inds] # boxes = torch.as_tensor(boxes) ann_ids = self.coco.getAnnIds(imgIds=img_id) anns = self.coco.loadAnns(ann_ids) ann_ids_inst = self.coco_inst.getAnnIds(imgIds=img_id) anns_inst = self.coco_inst.loadAnns(ann_ids_inst) idb = anns[0] boxes = [ann_['bbox'] for ann_ in anns_inst] boxes = torch.as_tensor(boxes).reshape(-1, 4) TO_REMOVE = 1 xmin, ymin, w, h = boxes.split(1, dim=-1) xmax = xmin + (w - TO_REMOVE).clamp(min=0) ymax = ymin + (h - TO_REMOVE).clamp(min=0) boxes = torch.cat((xmin, ymin, xmax, ymax), dim=-1) boxes_cls_scores = boxes.new_zeros((boxes.shape[0], 81)) classes = [ann["category_id"] for ann in anns_inst] classes = [self.json_category_id_to_contiguous_id[c] for c in classes] for i, class_ in enumerate(classes): boxes_cls_scores[i, class_] = 1.0 if self.with_precomputed_visual_feat: assert False # image = None # w0, h0 = frcnn_data['image_w'], frcnn_data['image_h'] # boxes_features = np.frombuffer(self.b64_decode(frcnn_data['features']), # dtype=np.float32).reshape((frcnn_data['num_boxes'], -1)) # boxes_features = boxes_features[inds] # boxes_features = torch.as_tensor(boxes_features) else: path = self.coco_inst.loadImgs(img_id)[0]['file_name'] image = self._load_image(os.path.join(self.root, path)) w0, h0 = image.size if self.add_image_as_a_box: image_box = torch.as_tensor([[0.0, 0.0, w0 - 1.0, h0 - 1.0]]) boxes = torch.cat((image_box, boxes), dim=0) if self.with_precomputed_visual_feat: assert False # image_box_feat = boxes_features.mean(dim=0, keepdim=True) # boxes_features = torch.cat((image_box_feat, boxes_features), dim=0) # transform im_info = torch.tensor([w0, h0, 1.0, 1.0, index]) if self.transform is not None: image, boxes, _, im_info = self.transform(image, boxes, None, im_info) if image is None and (not self.with_precomputed_visual_feat): assert False # w = int(im_info[0].item()) # h = int(im_info[1].item()) # image = im_info.new_zeros((3, h, w), dtype=torch.float) # clamp boxes w = im_info[0].item() h = im_info[1].item() boxes[:, [0, 2]] = boxes[:, [0, 2]].clamp(min=0, max=w - 1) boxes[:, [1, 3]] = boxes[:, [1, 3]].clamp(min=0, max=h - 1) # Task #1: Caption-Image Relationship Prediction _p = random.random() if _p < 0.5 or (not self.with_rel_task): relationship_label = 1 caption = idb['caption'] else: assert False relationship_label = 0 rand_index = random.randrange(0, len(self.database)) while rand_index == index: rand_index = random.randrange(0, len(self.database)) caption = self.database[rand_index]['caption'] assert isinstance(caption, str) # Task #2: Masked Language Modeling if self.with_mlm_task: caption_tokens = self.tokenizer.basic_tokenizer.tokenize(caption) caption_tokens, mlm_labels = self.random_word_wwm(caption_tokens) else: caption_tokens = self.tokenizer.tokenize(caption) mlm_labels = [-1] * len(caption_tokens) text_tokens = ['[CLS]'] + caption_tokens + ['[SEP]'] mlm_labels = [-1] + mlm_labels + [-1] # Task #3: Masked Visual Region Classification if self.with_mvrc_task: if self.add_image_as_a_box: mvrc_ops, mvrc_labels = self.random_mask_region( boxes_cls_scores) mvrc_ops = [0] + mvrc_ops mvrc_labels = [np.zeros_like(boxes_cls_scores[0]) ] + mvrc_labels num_real_boxes = boxes.shape[0] - 1 num_masked_boxes = 0 if self.with_precomputed_visual_feat: assert False # boxes_features[0] *= num_real_boxes # for mvrc_op, box_feat in zip(mvrc_ops, boxes_features): # if mvrc_op == 1: # num_masked_boxes += 1 # boxes_features[0] -= box_feat # boxes_features[0] /= (num_real_boxes - num_masked_boxes + 1e-5) else: mvrc_ops, mvrc_labels = self.random_mask_region( boxes_cls_scores) assert len(mvrc_ops) == boxes.shape[0], \ "Error: mvrc_ops have length {}, expected {}!".format(len(mvrc_ops), boxes.shape[0]) assert len(mvrc_labels) == boxes.shape[0], \ "Error: mvrc_labels have length {}, expected {}!".format(len(mvrc_labels), boxes.shape[0]) else: mvrc_ops = [0] * boxes.shape[0] mvrc_labels = [np.zeros_like(boxes_cls_scores[0])] * boxes.shape[0] # zero out pixels of masked RoI if (not self.with_precomputed_visual_feat) and self.mask_raw_pixels: for mvrc_op, box in zip(mvrc_ops, boxes): if mvrc_op == 1: x1, y1, x2, y2 = box image[:, int(y1):(int(y2) + 1), int(x1):(int(x2) + 1)] = 0 mvrc_labels = np.stack(mvrc_labels, axis=0) text = self.tokenizer.convert_tokens_to_ids(text_tokens) if self.with_precomputed_visual_feat: assert False # boxes = torch.cat((boxes, boxes_features), dim=1) # truncate seq to max len if len(text) + len(boxes) > self.seq_len: text_len_keep = len(text) box_len_keep = len(boxes) while (text_len_keep + box_len_keep) > self.seq_len: if box_len_keep > text_len_keep: box_len_keep -= 1 else: text_len_keep -= 1 boxes = boxes[:box_len_keep] text = text[:text_len_keep] mlm_labels = mlm_labels[:text_len_keep] mvrc_ops = mvrc_ops[:box_len_keep] mvrc_labels = mvrc_labels[:box_len_keep] return image, boxes, im_info, text, relationship_label, mlm_labels, mvrc_ops, mvrc_labels # def random_word(self, tokens): # output_label = [] # # for i, token in enumerate(tokens): # prob = random.random() # # mask token with 15% probability # if prob < 0.15: # prob /= 0.15 # # # 80% randomly change token to mask token # if prob < 0.8: # tokens[i] = "[MASK]" # # # 10% randomly change token to random token # elif prob < 0.9: # tokens[i] = random.choice(list(self.tokenizer.vocab.items()))[0] # # # -> rest 10% randomly keep current token # # # append current token to output (we will predict these later) # try: # output_label.append(self.tokenizer.vocab[token]) # except KeyError: # # For unknown words (should not occur with BPE vocab) # output_label.append(self.tokenizer.vocab["[UNK]"]) # logging.warning("Cannot find token '{}' in vocab. Using [UNK] insetad".format(token)) # else: # # no masking token (will be ignored by loss function later) # output_label.append(-1) # # # if no word masked, random choose a word to mask # if self.force_mask: # if all([l_ == -1 for l_ in output_label]): # choosed = random.randrange(0, len(output_label)) # output_label[choosed] = self.tokenizer.vocab[tokens[choosed]] # # return tokens, output_label def random_word_wwm(self, tokens): output_tokens = [] output_label = [] for i, token in enumerate(tokens): sub_tokens = self.tokenizer.wordpiece_tokenizer.tokenize(token) prob = random.random() # mask token with 15% probability if prob < 0.15: prob /= 0.15 # 80% randomly change token to mask token if prob < 0.8: for sub_token in sub_tokens: output_tokens.append("[MASK]") # 10% randomly change token to random token elif prob < 0.9: for sub_token in sub_tokens: output_tokens.append( random.choice(list(self.tokenizer.vocab.keys()))) # -> rest 10% randomly keep current token else: for sub_token in sub_tokens: output_tokens.append(sub_token) # append current token to output (we will predict these later) for sub_token in sub_tokens: try: output_label.append(self.tokenizer.vocab[sub_token]) except KeyError: # For unknown words (should not occur with BPE vocab) output_label.append(self.tokenizer.vocab["[UNK]"]) logging.warning( "Cannot find sub_token '{}' in vocab. Using [UNK] insetad" .format(sub_token)) else: for sub_token in sub_tokens: # no masking token (will be ignored by loss function later) output_tokens.append(sub_token) output_label.append(-1) ## if no word masked, random choose a word to mask # if all([l_ == -1 for l_ in output_label]): # choosed = random.randrange(0, len(output_label)) # output_label[choosed] = self.tokenizer.vocab[tokens[choosed]] return output_tokens, output_label def random_mask_region(self, regions_cls_scores): num_regions, num_classes = regions_cls_scores.shape output_op = [] output_label = [] for k, cls_scores in enumerate(regions_cls_scores): prob = random.random() # mask region with 15% probability if prob < 0.15: prob /= 0.15 if prob < 0.9: # 90% randomly replace appearance feature by "MASK" output_op.append(1) else: # -> rest 10% randomly keep current appearance feature output_op.append(0) # append class of region to output (we will predict these later) output_label.append(cls_scores) else: # no masking region (will be ignored by loss function later) output_op.append(0) output_label.append(np.zeros_like(cls_scores)) # # if no region masked, random choose a region to mask # if all([op == 0 for op in output_op]): # choosed = random.randrange(0, len(output_op)) # output_op[choosed] = 1 # output_label[choosed] = regions_cls_scores[choosed] return output_op, output_label @staticmethod def b64_decode(string): return base64.decodebytes(string.encode()) @staticmethod def group_aspect(database): print('grouping aspect...') t = time.time() # get shape of all images widths = torch.as_tensor([idb['width'] for idb in database]) heights = torch.as_tensor([idb['height'] for idb in database]) # group group_ids = torch.zeros(len(database)) horz = widths >= heights vert = 1 - horz group_ids[horz] = 0 group_ids[vert] = 1 print('Done (t={:.2f}s)'.format(time.time() - t)) return group_ids def __len__(self): return len(self.ids) def _load_image(self, path): if '.zip@' in path: return self.zipreader.imread(path).convert('RGB') else: return Image.open(path).convert('RGB') def _load_json(self, path): if '.zip@' in path: f = self.zipreader.read(path) return json.loads(f.decode()) else: with open(path, 'r') as f: return json.load(f)
def __init__(self, ann_file, image_set, root_path, data_path, seq_len=64, with_precomputed_visual_feat=False, mask_raw_pixels=True, with_rel_task=True, with_mlm_task=False, with_mvrc_task=False, transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, aspect_grouping=False, languages_used='first', MLT_vocab='bert-base-german-cased-vocab.txt', **kwargs): """ Conceptual Captions Dataset :param ann_file: annotation jsonl file :param image_set: image folder name, e.g., 'vcr1images' :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(Multi30kDataset2018, self).__init__() assert not cache_mode, 'currently not support cache mode!' # TODO: need to remove this to allows testing # assert not test_mode annot = {'train': 'train_MLT_frcnn.json', 'val': 'val_MLT_frcnn.json', 'test2015': 'test_MLT_2018_renamed_frcnn.json'} self.seq_len = seq_len self.with_rel_task = with_rel_task self.with_mlm_task = with_mlm_task self.with_mvrc_task = with_mvrc_task self.data_path = data_path self.root_path = root_path self.ann_file = os.path.join(data_path, annot[image_set]) self.with_precomputed_visual_feat = with_precomputed_visual_feat self.mask_raw_pixels = mask_raw_pixels self.image_set = image_set self.transform = transform self.test_mode = test_mode self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping #FM edit: added option for how many captions self.languages_used = languages_used self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) self.zipreader = ZipReader() # FM: Customise for multi30k dataset self.database = list(jsonlines.open(self.ann_file)) if not self.zip_mode: for i, idb in enumerate(self.database): self.database[i]['frcnn'] = idb['frcnn'].replace('.zip@', '')\ .replace('.0', '').replace('.1', '').replace('.2', '').replace('.3', '') self.database[i]['image'] = idb['image'].replace('.zip@', '') if self.aspect_grouping: assert False, "not support aspect grouping currently!" self.group_ids = self.group_aspect(self.database) print('mask_raw_pixels: ', self.mask_raw_pixels) #FM: initialise vocabulary for output self.MLT_vocab_path = os.path.join(root_path, 'model/pretrained_model', MLT_vocab) self.MLT_vocab = [] with open(self.MLT_vocab_path) as fp: for cnt, line in enumerate(fp): self.MLT_vocab.append(line.strip())
def __init__(self, ann_file, image_set, root_path, data_path, seq_len=64, with_precomputed_visual_feat=False, mask_raw_pixels=True, with_rel_task=True, with_mlm_task=True, with_mvrc_task=True, transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, aspect_grouping=False, **kwargs): """ Conceptual Captions Dataset :param ann_file: annotation jsonl file :param image_set: image folder name, e.g., 'vcr1images' :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(COCOCaptionsDataset, self).__init__() assert not cache_mode, 'currently not support cache mode!' assert not test_mode annot = { 'train': 'annotations/captions_train2017.json', 'val': 'annotations/captions_val2017.json' } annot_inst = { 'train': 'annotations/instances_train2017.json', 'val': 'annotations/instances_val2017.json' } if zip_mode: self.root = os.path.join(data_path, '{0}2017.zip@/{0}2017'.format(image_set)) else: self.root = os.path.join(data_path, '{}2017'.format(image_set)) self.seq_len = seq_len self.with_rel_task = with_rel_task self.with_mlm_task = with_mlm_task self.with_mvrc_task = with_mvrc_task self.data_path = data_path self.root_path = root_path self.ann_file = os.path.join(data_path, annot[image_set]) self.ann_file_inst = os.path.join(data_path, annot_inst[image_set]) self.with_precomputed_visual_feat = with_precomputed_visual_feat self.mask_raw_pixels = mask_raw_pixels self.image_set = image_set self.transform = transform self.test_mode = test_mode self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) if self.zip_mode: self.zipreader = ZipReader() self.coco = COCO(self.ann_file) self.coco_inst = COCO(self.ann_file_inst) self.ids = list(sorted(self.coco.imgs.keys())) # filter images without detection annotations self.ids = [ img_id for img_id in self.ids if len(self.coco_inst.getAnnIds(imgIds=img_id, iscrowd=None)) > 0 ] self.json_category_id_to_contiguous_id = { v: i + 1 for i, v in enumerate(self.coco_inst.getCatIds()) } self.contiguous_category_id_to_json_id = { v: k for k, v in self.json_category_id_to_contiguous_id.items() } self.id_to_img_map = {k: v for k, v in enumerate(self.ids)} if self.aspect_grouping: assert False, "not support aspect grouping currently!" # self.group_ids = self.group_aspect(self.database) print('mask_raw_pixels: ', self.mask_raw_pixels)
def __init__(self, root_path=None, image_set='train', transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, mask_size=(14, 14), aspect_grouping=False, **kwargs): """ Visual Question Answering Dataset :param root_path: root path to cache database loaded from annotation file :param data_path: path to vcr dataset :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param mask_size: size of instance mask of each object :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(CLS3, self).__init__() cache_dir = False assert not cache_mode, 'currently not support cache mode!' categories = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'trafficlight', 'firehydrant', 'stopsign', 'parkingmeter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sportsball', 'kite', 'baseballbat', 'baseballglove', 'skateboard', 'surfboard', 'tennisracket', 'bottle', 'wineglass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hotdog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'pottedplant', 'bed', 'diningtable', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cellphone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddybear', 'hairdrier', 'toothbrush' ] self.category_to_idx = {c: i for i, c in enumerate(categories)} self.data_split = image_set # HACK: reuse old parameter self.periodStrip = re.compile("(?!<=\d)(\.)(?!\d)") self.commaStrip = re.compile("(\d)(\,)(\d)") self.punct = [ ';', r"/", '[', ']', '"', '{', '}', '(', ')', '=', '+', '\\', '_', '-', '>', '<', '@', '`', ',', '?', '!' ] self.test_mode = test_mode self.root_path = root_path self.box_bank = {} self.transform = transform self.zip_mode = zip_mode self.aspect_grouping = aspect_grouping self.add_image_as_a_box = add_image_as_a_box self.cache_dir = os.path.join(root_path, 'cache') # return_offsets_mapping model_name = 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name self.fast_tokenizer = AutoTokenizer.from_pretrained( 'bert-base-uncased', cache_dir=self.cache_dir, use_fast=True, return_offsets_mapping=True) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( model_name, cache_dir=self.cache_dir) self.max_txt_token = 128 if zip_mode: self.zipreader = ZipReader() self.anno_aug = 'anno_aug' in kwargs self.database = self.load_annotations() self.use_img_box = True self.random_drop_tags = False
class Foil(Dataset): def __init__(self, root_path, data_path, boxes='gt', proposal_source='official', transform=None, test_mode=False, zip_mode=False, cache_mode=False, cache_db=False, ignore_db_cache=True, tokenizer=None, pretrained_model_name=None, add_image_as_a_box=False, mask_size=(14, 14), aspect_grouping=False, **kwargs): """ Foil Dataset :param image_set: image folder name :param root_path: root path to cache database loaded from annotation file :param data_path: path to dataset :param boxes: boxes to use, 'gt' or 'proposal' :param transform: transform :param test_mode: test mode means no labels available :param zip_mode: reading images and metadata in zip archive :param cache_mode: cache whole dataset to RAM first, then __getitem__ read them from RAM :param ignore_db_cache: ignore previous cached database, reload it from annotation file :param tokenizer: default is BertTokenizer from pytorch_pretrained_bert :param add_image_as_a_box: add whole image as a box :param mask_size: size of instance mask of each object :param aspect_grouping: whether to group images via their aspect :param kwargs: """ super(Foil, self).__init__() assert not cache_mode, 'currently not support cache mode!' coco_annot_files = { "train2014": "annotations/instances_train2014.json", "val2014": "annotations/instances_val2014.json", "test2015": "annotations/image_info_test2015.json", } foil_annot_files = { "train": "foil/foilv1.0_train_2017.json", "test": "foil/foilv1.0_test_2017.json" } foil_vocab_file = "foil/vocab.txt" self.vg_proposal = ("vgbua_res101_precomputed", "trainval2014_resnet101_faster_rcnn_genome") self.test_mode = test_mode self.data_path = data_path self.root_path = root_path self.transform = transform vocab_file = open(os.path.join(data_path, foil_vocab_file), 'r') vocab_lines = vocab_file.readlines() vocab_lines = [v.strip() for v in vocab_lines] self.itos = vocab_lines self.stoi = dict(list(zip(self.itos, range(len(vocab_lines))))) if self.test_mode: self.image_set = "val2014" coco_annot_file = coco_annot_files["val2014"] else: self.image_set = "train2014" coco_annot_file = coco_annot_files["train2014"] self.coco = COCO( annotation_file=os.path.join(data_path, coco_annot_file)) self.foil = FOIL(data_path, 'train' if not test_mode else 'test') self.foil_ids = list(self.foil.Foils.keys()) self.foils = self.foil.loadFoils(foil_ids=self.foil_ids) if 'proposal' in boxes: with open(os.path.join(data_path, proposal_dets), 'r') as f: proposal_list = json.load(f) self.proposals = {} for proposal in proposal_list: image_id = proposal['image_id'] if image_id in self.proposals: self.proposals[image_id].append(proposal['box']) else: self.proposals[image_id] = [proposal['box']] self.boxes = boxes self.zip_mode = zip_mode self.cache_mode = cache_mode self.cache_db = cache_db self.ignore_db_cache = ignore_db_cache self.aspect_grouping = aspect_grouping self.cache_dir = os.path.join(root_path, 'cache') self.add_image_as_a_box = add_image_as_a_box self.mask_size = mask_size if not os.path.exists(self.cache_dir): makedirsExist(self.cache_dir) self.tokenizer = tokenizer if tokenizer is not None \ else BertTokenizer.from_pretrained( 'bert-base-uncased' if pretrained_model_name is None else pretrained_model_name, cache_dir=self.cache_dir) if zip_mode: self.zipreader = ZipReader() self.database = self.load_annotations() if self.aspect_grouping: self.group_ids = self.group_aspect(self.database) @property def data_names(self): return [ 'image', 'boxes', 'im_info', 'expression', 'label', 'pos', 'target', 'mask' ] def __getitem__(self, index): idb = self.database[index] # image related img_id = idb['image_id'] image = self._load_image(idb['image_fn']) im_info = torch.as_tensor([idb['width'], idb['height'], 1.0, 1.0]) #if not self.test_mode: # gt_box = torch.as_tensor(idb['gt_box']) flipped = False if self.boxes == 'gt': ann_ids = self.coco.getAnnIds(imgIds=img_id) anns = self.coco.loadAnns(ann_ids) boxes = [] for ann in anns: x_, y_, w_, h_ = ann['bbox'] boxes.append([x_, y_, x_ + w_, y_ + h_]) boxes = torch.as_tensor(boxes) elif self.boxes == 'proposal': if self.proposal_source == 'official': boxes = torch.as_tensor(self.proposals[img_id]) boxes[:, [2, 3]] += boxes[:, [0, 1]] elif self.proposal_source == 'vg': box_file = os.path.join( self.data_path, self.vg_proposal[0], '{0}.zip@/{0}'.format(self.vg_proposal[1])) boxes_fn = os.path.join(box_file, '{}.json'.format(idb['image_id'])) boxes_data = self._load_json(boxes_fn) boxes = torch.as_tensor( np.frombuffer(self.b64_decode(boxes_data['boxes']), dtype=np.float32).reshape( (boxes_data['num_boxes'], -1))) else: raise NotImplemented elif self.boxes == 'proposal+gt' or self.boxes == 'gt+proposal': if self.proposal_source == 'official': boxes = torch.as_tensor(self.proposals[img_id]) boxes[:, [2, 3]] += boxes[:, [0, 1]] elif self.proposal_source == 'vg': box_file = os.path.join( self.data_path, self.vg_proposal[0], '{0}.zip@/{0}'.format(self.vg_proposal[1])) boxes_fn = os.path.join(box_file, '{}.json'.format(idb['image_id'])) boxes_data = self._load_json(boxes_fn) boxes = torch.as_tensor( np.frombuffer(self.b64_decode(boxes_data['boxes']), dtype=np.float32).reshape( (boxes_data['num_boxes'], -1))) ann_ids = self.coco.getAnnIds(imgIds=img_id) anns = self.coco.loadAnns(ann_ids) gt_boxes = [] for ann in anns: x_, y_, w_, h_ = ann['bbox'] gt_boxes.append([x_, y_, x_ + w_, y_ + h_]) gt_boxes = torch.as_tensor(gt_boxes) boxes = torch.cat((boxes, gt_boxes), 0) else: raise NotImplemented if self.add_image_as_a_box: w0, h0 = im_info[0], im_info[1] image_box = torch.as_tensor([[0.0, 0.0, w0 - 1, h0 - 1]]) boxes = torch.cat((image_box, boxes), dim=0) if self.transform is not None: image, boxes, _, im_info, flipped = self.transform( image, boxes, None, im_info, flipped) # clamp boxes w = im_info[0].item() h = im_info[1].item() boxes[:, [0, 2]] = boxes[:, [0, 2]].clamp(min=0, max=w - 1) boxes[:, [1, 3]] = boxes[:, [1, 3]].clamp(min=0, max=h - 1) # assign label expression with the foil annotation label = idb['label'] foil_pos = idb['pos'] # expression exp = idb['caption_tokens'] exp_ids = self.tokenizer.convert_tokens_to_ids(exp) target = self.stoi[idb['target_word']] mask = idb['mask'] if self.test_mode: return image, boxes, im_info, exp_ids, label, foil_pos, target, mask else: return image, boxes, im_info, exp_ids, label, foil_pos, target, mask @staticmethod def b64_decode(string): return base64.decodebytes(string.encode()) def load_annotations(self): tic = time.time() database = [] db_cache_name = 'foil_{}'.format(self.image_set) if self.zip_mode: db_cache_name = db_cache_name + '_zipmode' if self.test_mode: db_cache_name = db_cache_name + '_testmode' db_cache_root = os.path.join(self.root_path, 'cache') db_cache_path = os.path.join(db_cache_root, '{}.pkl'.format(db_cache_name)) if os.path.exists(db_cache_path): if not self.ignore_db_cache: # reading cached database print('cached database found in {}.'.format(db_cache_path)) with open(db_cache_path, 'rb') as f: print('loading cached database from {}...'.format( db_cache_path)) tic = time.time() database = cPickle.load(f) print('Done (t={:.2f}s)'.format(time.time() - tic)) return database else: print('cached database ignored.') # ignore or not find cached database, reload it from annotation file print('loading database of split {}...'.format(self.image_set)) tic = time.time() for foil_id, foil in zip(self.foil_ids, self.foils): iset = 'train2014' if self.zip_mode: image_fn = os.path.join( self.data_path, iset + '.zip@/' + iset, 'COCO_{}_{:012d}.jpg'.format(iset, foil['image_id'])) else: image_fn = os.path.join( self.root_path, self.data_path, iset, 'COCO_{}_{:012d}.jpg'.format(iset, foil['image_id'])) expression_tokens = self.tokenizer.basic_tokenizer.tokenize( foil['caption']) expression_wps = [] for token in expression_tokens: expression_wps.extend( self.tokenizer.wordpiece_tokenizer.tokenize(token)) word_offsets = [0] for i, wp in enumerate(expression_wps): if wp[0] == '#': #still inside single word continue else: #this is the beginning of a new word word_offsets.append(i) word_offsets.append(len(expression_wps)) target_word = foil['target_word'] foil_word = foil['foil_word'] target_wps = None target_pos = -1 if foil['foil']: foil_wps = self.tokenizer.wordpiece_tokenizer.tokenize( foil_word) twps_len = len(foil_wps) for i in range(len(expression_wps) - twps_len): if expression_wps[i:i + twps_len] == foil_wps: target_pos = i break else: twps_len = 1 idb = { 'ann_id': foil['id'], 'foil_id': foil['foil_id'], 'image_id': foil['image_id'], 'image_fn': image_fn, 'width': self.coco.imgs[foil['image_id']]['width'], 'height': self.coco.imgs[foil['image_id']]['height'], 'caption': foil['caption'].strip(), 'caption_tokens': expression_wps, 'target_word': foil['target_word'], 'target': self.stoi.get(foil['target_word'], 0), 'foil_word': foil['foil_word'], 'label': foil['foil'], 'pos': target_pos, 'mask': twps_len } database.append(idb) print('Done (t={:.2f}s)'.format(time.time() - tic)) # cache database via cPickle if self.cache_db: print('caching database to {}...'.format(db_cache_path)) tic = time.time() if not os.path.exists(db_cache_root): makedirsExist(db_cache_root) with open(db_cache_path, 'wb') as f: cPickle.dump(database, f) print('Done (t={:.2f}s)'.format(time.time() - tic)) return database @staticmethod def group_aspect(database): print('grouping aspect...') t = time.time() # get shape of all images widths = torch.as_tensor([idb['width'] for idb in database]) heights = torch.as_tensor([idb['height'] for idb in database]) # group group_ids = torch.zeros(len(database)) horz = widths >= heights vert = 1 - horz group_ids[horz] = 0 group_ids[vert] = 1 print('Done (t={:.2f}s)'.format(time.time() - t)) return group_ids def __len__(self): return len(self.database) def _load_image(self, path): if '.zip@' in path: return self.zipreader.imread(path).convert('RGB') else: return Image.open(path).convert('RGB') def _load_json(self, path): if '.zip@' in path: f = self.zipreader.read(path) return json.loads(f.decode()) else: with open(path, 'r') as f: return json.load(f)