Exemple #1
0
def show_matrices_recovered(W_r, H_r, W, H, cfg=config.default_config(), permute=True):
    if permute:
        idx = get_permute(W_r, H_r, W, H, cfg["munkres"])
    else:
        idx = np.array([range(W.shape[1]), range(W.shape[1])])
    # f, axarr = plt.subplots(nrows=1, ncols=1)
    # axarr[0, 0].imshow(1-W_r, cmap='gray')
    # axarr[0, 0].set_title('W real')
    # axarr[0, 1].imshow(1-H_r, cmap='gray')
    # axarr[0, 1].set_title('H real')
    plt.matshow(1 - W[:, idx[:, 1]], cmap=plt.cm.gray)
Exemple #2
0
def show_matrices_recovered(W_r, H_r, W, H, cfg=config.default_config(), permute=True):
    if permute:
        idx = get_permute(W_r, H_r, W, H, cfg['munkres'])
    else:
        idx = np.array([range(W.shape[1]), range(W.shape[1])])
    #f, axarr = plt.subplots(nrows=1, ncols=1)
    #axarr[0, 0].imshow(1-W_r, cmap='gray')
    #axarr[0, 0].set_title('W real')
    #axarr[0, 1].imshow(1-H_r, cmap='gray')
    #axarr[0, 1].set_title('H real')
    plt.matshow(1-W[:, idx[:, 1]], cmap=plt.cm.gray)
Exemple #3
0
def run(F, Phi, Theta, Phi_r=None, Theta_r=None, cfg=config.default_config()):
    """Em-algo method.
       - Return:
       val
       hdist
       it
       Phi
       Theta
       status
       - Used params:

    """
    #F_norm = normalize_cols(F)
    T = Theta.shape[0]
    eps = cfg['eps']
    schedule = cfg['schedule'].split(',')
    meas = cfg['measure'].split(',')
    val = np.zeros((cfg['max_iter']+2, len(meas)))
    hdist = np.zeros((2, cfg['max_iter']+2))#Phi - first row, Theta - second
    
    for i, fun_name in enumerate(meas):
        fun = getattr(measure, fun_name)
        val[0, i] = fun(F, np.dot(Phi, Theta))
    
    if cfg['compare_real']:
        #m = Munkres()
        idx = get_permute(Phi_r, Theta_r, Phi, Theta, cfg['munkres'])
        hdist[0][0] = hellinger(Phi[:, idx[:, 1]], Phi_r[:, idx[:, 0]])
        hdist[1][0] = hellinger(Theta[idx[:, 1],:], Theta_r[idx[:, 0],:])

    if cfg['print_lvl'] > 1:
        print('Initial loss:', val[0])
    status = 0
    methods_num = len(schedule)
    it = -1
    for it in range(cfg['max_iter']+1):
        if cfg['print_lvl'] > 1:
            print('Iteration', it+1)
        ####Phi_old = deepcopy(Phi)
        ####Theta_old = deepcopy(Theta)
        method_name = schedule[it % methods_num]
        if cfg['print_lvl'] > 1:
            print('Method:', method_name)
        method = getattr(methods, method_name)
        (Phi, Theta) = method(F, Phi, Theta, method_name, cfg)
        #jogging of weights
        if cfg['jogging'] == 1 and it < 10:
            joh_alpha = 0.25
            cfg['phi_sparsity'] = 0.05
            cfg['theta_sparsity'] = 0.1
            Phi_jog, Theta_jog = gen_init(cfg)
            Phi = (1-joh_alpha**(it+1))*Phi + joh_alpha**(it+1)*Phi_jog
            Theta = (1-joh_alpha**(it+1))*Theta + joh_alpha**(it+1)*Theta_jog
        for j, fun_name in enumerate(meas):
            fun = getattr(measure, fun_name)
            val[it+1, j] = fun(F, np.dot(Phi, Theta))#fun(F_norm, np.dot(Phi, Theta))
        
        if cfg['compare_real']:
            idx = get_permute(Phi_r, Theta_r, Phi, Theta, cfg['munkres'])
            hdist[0][it+1] = hellinger(Phi[:, idx[:, 1]], Phi_r[:, idx[:, 0]])
            hdist[1][it+1] = hellinger(Theta[idx[:, 1], :], Theta_r[idx[:, 0], :])
        
        if cfg['print_lvl'] > 1:
            print(val[it+1])
        if all(val[it, :] < eps):
            if cfg['print_lvl'] > 1:
                print('By cost.')
            status = 1
            break
        '''if abs(Phi_old - Phi).max() < eps and abs(Theta_old - Theta).max() < eps:
            if cfg['print_lvl'] > 1:
                print('By argument.')
            status = 2
            break'''
        #del W_old
        #del H_old
    if cfg['print_lvl'] > 1:
        print('Final:')
    #Phi = normalize_cols(Phi)
    #Theta = normalize_cols(Theta)
    #for j, fun_name in enumerate(meas):
    #    fun = getattr(measure, fun_name)
    #    val[it+2:, j] = fun(F, np.dot(Phi, Theta))#fun(F_norm, np.dot(Phi, Theta))
    
    #if cfg['compare_real']:
    #    idx = get_permute(Phi_r, Theta_r, Phi, Theta, cfg['munkres'])
    #    hdist[0][it+2:] = hellinger(Phi[:, idx[:, 1]], Phi_r[:, idx[:, 0]])
    #    hdist[1][it+2:] = hellinger(Theta[idx[:, 1],:], Theta_r[idx[:, 0], :])

    return (val, hdist, it, Phi, Theta, status)
Exemple #4
0
def run(V, W, H, W_r=None, H_r=None, cfg=config.default_config()):
    T = H.shape[0]
    eps = cfg['eps']
    schedule = cfg['schedule'].split(',')
    meas = cfg['measure'].split(',')
    val = np.zeros((cfg['max_iter'] + 2, len(meas)))
    hdist = np.zeros((cfg['max_iter'] + 2, 1))

    for i, fun_name in enumerate(meas):
        fun = getattr(measure, fun_name)
        val[0, i] = fun(V, np.dot(W, H))

    if cfg['compare_real']:
        #m = Munkres()
        idx = get_permute(W_r, H_r, W, H, cfg['munkres'])
        hdist[0] = hellinger(W[:, idx[:, 1]], W_r[:, idx[:, 0]]) / T
    if cfg['print_lvl'] > 1:
        print('Initial loss:', val[0])
    status = 0
    methods_num = len(schedule)
    it = -1
    for it in range(cfg['max_iter']):
        if cfg['print_lvl'] > 1:
            print('Iteration', it + 1)
        W_old = deepcopy(W)
        H_old = deepcopy(H)
        method_name = schedule[it % methods_num]
        if cfg['print_lvl'] > 1:
            print('Method:', method_name)
        method = getattr(methods, method_name)
        (W, H) = method(V, W, H, method_name, cfg)
        if (it + 1) % cfg['normalize_iter'] == 0:
            W = normalize_cols(W)
            H = normalize_cols(H)
        for j, fun_name in enumerate(meas):
            fun = getattr(measure, fun_name)
            val[it + 1, j] = fun(V, np.dot(W, H))

        if cfg['compare_real']:
            idx = get_permute(W_r, H_r, W, H, cfg['munkres'])
            hdist[it + 1] = hellinger(W[:, idx[:, 1]], W_r[:, idx[:, 0]]) / T

        if cfg['print_lvl'] > 1:
            print(val[it + 1])
        if all(val[it, :] < eps):
            if cfg['print_lvl'] > 1:
                print('By cost.')
            status = 1
            break
        if abs(W_old - W).max() < eps and abs(H_old - H).max() < eps:
            if cfg['print_lvl'] > 1:
                print('By argument.')
            status = 2
            break
        #del W_old
        #del H_old
    if cfg['print_lvl'] > 1:
        print('Final:')
    W = normalize_cols(W)
    H = normalize_cols(H)
    for j, fun_name in enumerate(meas):
        fun = getattr(measure, fun_name)
        val[it + 2:, j] = fun(V, np.dot(W, H))

    if cfg['compare_real']:
        idx = get_permute(W_r, H_r, W, H, cfg['munkres'])
        hdist[it + 2:] = hellinger(W[:, idx[:, 1]], W_r[:, idx[:, 0]]) / T
    return (val, hdist, it, W, H, status)
Exemple #5
0
def run(V, W, H, W_r=None, H_r=None, cfg=config.default_config()):
    T = H.shape[0]
    eps = cfg['eps']
    schedule = cfg['schedule'].split(',')
    meas = cfg['measure'].split(',')
    val = np.zeros((cfg['max_iter']+2, len(meas)))
    hdist = np.zeros((cfg['max_iter']+2, 1))
    
    for i, fun_name in enumerate(meas):
        fun = getattr(measure, fun_name)
        val[0, i] = fun(V, np.dot(W, H))
    
    if cfg['compare_real']:
        #m = Munkres()
        idx = get_permute(W_r, H_r, W, H, cfg['munkres'])
        hdist[0] = hellinger(W[:, idx[:, 1]], W_r[:, idx[:, 0]]) / T
    if cfg['print_lvl'] > 1:
        print('Initial loss:', val[0])
    status = 0
    methods_num = len(schedule)
    it = -1
    for it in range(cfg['max_iter']):
        if cfg['print_lvl'] > 1:
            print('Iteration', it+1)
        W_old = deepcopy(W)
        H_old = deepcopy(H)
        method_name = schedule[it % methods_num]
        if cfg['print_lvl'] > 1:
            print('Method:', method_name)
        method = getattr(methods, method_name)
        (W, H) = method(V, W, H, method_name, cfg)
        if (it+1) % cfg['normalize_iter'] == 0:
            W = normalize_cols(W)
            H = normalize_cols(H)
        for j, fun_name in enumerate(meas):
            fun = getattr(measure, fun_name)
            val[it+1, j] = fun(V, np.dot(W, H))
        
        if cfg['compare_real']:
            idx = get_permute(W_r, H_r, W, H, cfg['munkres'])
            hdist[it+1] = hellinger(W[:, idx[:, 1]], W_r[:, idx[:, 0]]) / T
        
        if cfg['print_lvl'] > 1:
            print(val[it+1])
        if all(val[it, :] < eps):
            if cfg['print_lvl'] > 1:
                print('By cost.')
            status = 1
            break
        if abs(W_old - W).max() < eps and abs(H_old - H).max() < eps:
            if cfg['print_lvl'] > 1:
                print('By argument.')
            status = 2
            break
        #del W_old
        #del H_old
    if cfg['print_lvl'] > 1:
        print('Final:')
    W = normalize_cols(W)
    H = normalize_cols(H)
    for j, fun_name in enumerate(meas):
        fun = getattr(measure, fun_name)
        val[it+2:, j] = fun(V, np.dot(W, H))
    
    if cfg['compare_real']:
        idx = get_permute(W_r, H_r, W, H, cfg['munkres'])
        hdist[it+2:] = hellinger(W[:, idx[:, 1]], W_r[:, idx[:, 0]]) / T
    return (val, hdist, it, W, H, status)