def run_inference(num_observations: int = 1000):
    """Run xgboost for specified number of observations"""
    # Load data
    train_x_df = common.get_test_data_df(X=common.X_df, size=num_observations)
    train_y_df = common.get_test_data_df(X=common.y_df, size=num_observations)
    num_rows = len(train_x_df)
    ######################
    print("_______________________________________")
    print("Total Number of Rows", num_rows)
    run_times = []
    inference_times = []
    for _ in range(NUM_LOOPS):

        start_time = timer()
        MODEL = d4p.decision_forest_regression_training(nTrees=100)
        train_result = MODEL.compute(train_x_df, train_y_df)
        end_time = timer()

        total_time = end_time - start_time
        run_times.append(total_time * 10e3)

        inference_time = total_time * (10e6) / num_rows
        inference_times.append(inference_time)

    return_elem = common.calculate_stats(inference_times)
    print(num_observations, ", ", return_elem)
    return return_elem
def run_inference(num_observations:int = 1000):
    """Run xgboost for specified number of observations"""
    # Load data
    test_df = common.get_test_data_df(X=common.X_dfc,size = num_observations)
    num_rows = len(test_df)
    ######################
    print("_______________________________________")
    print("Total Number of Rows", num_rows)
    run_times = []
    inference_times = []
    for _ in range(NUM_LOOPS):
        
        start_time = timer()
        
        cluster = DBSCAN(eps=0.3, min_samples=10)
        cluster.fit(test_df)
        #predictor.compute(data, MODEL)
        end_time = timer()

        total_time = end_time - start_time
        run_times.append(total_time*10e3)

        inference_time = total_time*(10e6)/num_rows
        inference_times.append(inference_time)

    return_elem = common.calculate_stats(inference_times)
    print(num_observations, ", ", return_elem)
    return return_elem
def run_inference(num_observations: int = 1000):
    """Run xgboost for specified number of observations"""
    # Load data
    train_x_df = common.get_test_data_df(X=common.X_dfc, size=num_observations)
    train_y = common.get_test_data_yc(size=num_observations)
    num_rows = len(train_x_df)
    ######################
    print("_______________________________________")
    print("Total Number of Rows", num_rows)
    run_times = []
    inference_times = []
    for _ in range(NUM_LOOPS):

        start_time = timer()
        reg = LogisticRegression().fit(train_x_df, train_y)
        end_time = timer()

        total_time = end_time - start_time
        run_times.append(total_time * 10e3)

        inference_time = total_time * (10e6) / num_rows
        inference_times.append(inference_time)

    return_elem = common.calculate_stats(inference_times)
    print(num_observations, ", ", return_elem)
    return return_elem
Exemple #4
0
def run_inference(num_observations: int = 1000):
    """Run xgboost for specified number of observations"""
    # Load data
    test_df = common.get_test_data_df(X=common.X_dfc, size=num_observations)
    num_rows = len(test_df)
    ######################
    print("_______________________________________")
    print("Total Number of Rows", num_rows)
    run_times = []
    inference_times = []
    for _ in range(NUM_LOOPS):

        start_time = timer()
        predict_algo = d4p.logistic_regression_prediction(
            nClasses=2,
            resultsToEvaluate=
            "computeClassLabels|computeClassProbabilities|computeClassLogProbabilities"
        )
        predict_result = predict_algo.compute(test_df, train_result.model)
        #predictor.compute(data, MODEL)
        end_time = timer()

        total_time = end_time - start_time
        run_times.append(total_time * 10e3)

        inference_time = total_time * (10e6) / num_rows
        inference_times.append(inference_time)
    return_elem = common.calculate_stats(inference_times)
    print(num_observations, ", ", return_elem)
    return return_elem
Exemple #5
0
def run_inference(num_observations:int = 1000):
    """Run xgboost for specified number of observations"""
    # Load data
    test_df = common.get_test_data_df(X=common.X_dfc,size = num_observations)
    num_rows = len(test_df)
    ######################
    print("_______________________________________")
    print("Total Number of Rows", num_rows)
    run_times = []
    inference_times = []
    for _ in range(NUM_LOOPS):
        
        start_time = timer()
        init_alg = d4p.kmeans_init(nClusters = 5, fptype = "float",
                                   method = "randomDense")
        centroids = init_alg.compute(test_df).centroids
        alg = d4p.kmeans(nClusters = 5, maxIterations = 100,
                         fptype = "float", accuracyThreshold = 0,
                         assignFlag = False)
        result = alg.compute((test_df), centroids)
        end_time = timer()

        total_time = end_time - start_time
        run_times.append(total_time*10e3)

        inference_time = total_time*(10e6)/num_rows
        inference_times.append(inference_time)

    return_elem = common.calculate_stats(inference_times)
    print(num_observations, ", ", return_elem)
    return return_elem
def run_inference(num_observations: int = 1000):
    """Run xgboost for specified number of observations"""
    # Load data
    test_df = common.get_test_data_df(X=common.X_dfc, size=num_observations)
    num_rows = len(test_df)
    ######################
    print("_______________________________________")
    print("Total Number of Rows", num_rows)
    run_times = []
    inference_times = []
    for _ in range(NUM_LOOPS):

        start_time = timer()

        cluster = KMeans(n_clusters=5, **kmeans_kwargs)
        cluster.fit(test_df)

        end_time = timer()

        total_time = end_time - start_time
        run_times.append(total_time * 10e3)

        inference_time = total_time * (10e6) / num_rows
        inference_times.append(inference_time)

    return_elem = common.calculate_stats(inference_times)
    print(num_observations, ", ", return_elem)
    return return_elem