def main(): args = get_args(__file__) labels = [ 'N/A', 'Id. Física', 'Id. Historiográfica', 'Desconocido', 'Perdido' ] colornames = ['light grey', 'medium green', 'denim blue', 'pale red'] df = pd.DataFrame(read_table(args.table)) df['ident'] = df.apply(categorize, axis=1) data = df\ .drop_duplicates(['bid', 'lid'], keep='first')\ .pivot(index='bid', columns='lid', values='ident')\ .fillna(0) #colors = sns.color_palette('hls', len(data)) #colors = sns.color_palette('husl', len(data)) #colors = sns.light_palette('red', len(data)) colors = sns.xkcd_palette(colornames) f, ax = plt.subplots() sns.heatmap(data, ax=ax, square=True, linewidth=0.5, cmap=ListedColormap(colors), cbar=False) set_axis(ax, data, as_letters(set(df.year.values)), 'Libros') legend(f, ax, labels, colors) plotting(plt, args)
def plot(args): df = pd.DataFrame(read_table(args.table)) configurer = configs[args.color_by] data, labels, colors = configurer(df, args.color_by) f, ax = plt.subplots() fig = sns.heatmap( data, ax=ax, #square=True, linewidth=0.5, cmap=ListedColormap(colors), cbar=False) set_axis(ax, data, as_letters(set(df.year.values)), ylabel='Posición') legend(f, ax, labels, colors) if args.annotated and args.color_by in ['bid', 'year']: df_by_bid = df.drop_duplicates('bid').set_index('bid') texts = [ fig.text( 15, bid, df.loc[bid, 'short'], fontsize=8, ) for bid, row in data.iterrows() ] plotting(plt, args)
def run_experiment(board, next, win, gmme, gabe): b = [0 for x in range(9)] common.set_board(b, board) common.print_board(b) common.variables.explored = 0 wmm = student_code.minmax_tictactoe(b, next) mme = common.variables.explored common.variables.explored = 0 wabp = student_code.abprun_tictactoe(b, next) abpe = common.variables.explored print(common.legend(next) + " moves Result :") res1 = "- MIN-MAX: " + common.legend(wmm) + " wins " if (wmm != win): res1 += "(" + bcolors.RED + "Fail" + bcolors.NORMAL + ")" else: res1 += "(" + bcolors.GREEN + "Pass" + bcolors.NORMAL + ")" res1 += " boards explored " + str(mme) if (mme != gmme): res1 += "(" + bcolors.RED + "Fail" + bcolors.NORMAL + ")" else: res1 += "(" + bcolors.GREEN + "Pass" + bcolors.NORMAL + ")" print(res1) res1 = "- ALPHA-BETA: " + common.legend(wabp) + " wins " if (wabp != win): res1 += "(" + bcolors.RED + "Fail" + bcolors.NORMAL + ")" else: res1 += "(" + bcolors.GREEN + "Pass" + bcolors.NORMAL + ")" res1 += " boards explored " + str(abpe) if (abpe != gabe): res1 += "(" + bcolors.RED + "Fail" + bcolors.NORMAL + ")" else: res1 += "(" + bcolors.GREEN + "Pass" + bcolors.NORMAL + ")" print(res1) print("") print("") return wmm == win and mme <= gmme and wabp == win and abpe <= gabe
def simFilters(): df = loadCSV('VS-filtering-34.csv', ( 'AbsAlt', 'TerAlt', 'Alt', 'AltAhead', 'Err', 'VSP', 'VSF', 'MinVSF', 'aV', 'rV', 'dV', 'mdTWR', 'mTWR', 'hV')) df = df[df.Alt > 3].reset_index() addL(df) L = df.L a = df.TerAlt aa = df.AltAhead # t1 = 20 T = np.arange(0, df.shape[0] * dt, dt) # er = np.sin(T*0.5)+np.random.normal(size=len(L))/10.0 ewa = vFilter(aa, EWA, ratio=0.1) ewa2 = vFilter(aa, EWA2, ratio=0.9) ax = plt.subplot() ax1 = ax.twinx() ax.plot(T, a, label='Alt') ax1.plot(T, -aa, label='Rad') ax1.plot(T, -ewa, label='EWA') ax1.plot(T, -ewa2, label='EWA2') # ax1.plot(L, g2, label='Gauss2') legend() plt.show()
def sim_Rotation(): def _plot(r, c, n, X, Y, aa, ylab): plt.subplot(r, c, n) plt.plot(X, Y, label=("V: AA=%.1f" % aa)) plt.xlabel("time (s)") plt.ylabel(ylab) MaxAngularA = np.arange(0.5, 30, 5); start_error = 0.8 * np.pi end_time = 10.0 def test(c, n, pid): p = pid.kp; d = pid.kd for aa in MaxAngularA: A = [start_error] V = [0.0] S = [0.0] T = [0.0] def plot(c, n, Y, ylab): _plot(3, c, n, T, Y, aa, ylab) pid.kp = p / aa pid.kd = d / aa while T[-1] < end_time: S.append(pid.update(A[-1])) V.append(V[-1] - S[-1] * aa * dt) A.append(A[-1] + V[-1] * dt) T.append(T[-1] + dt) plot(c, n, np.fromiter(A, float) / np.pi * 180.0, 'Angle') plot(c, c + n, V, 'Angular velocity') plot(c, c * 2 + n, S, 'Steering') test(2, 1, PID(6.0, 0, 10.0, -1, 1)) test(2, 2, PID(4.0, 0, 6.0, -1, 1)) legend() plt.show()
def main(): args = get_args(__file__) names = ['NA', 'LAT', 'ROM', 'FRAN'] labels = ['N/A', 'Latín', 'Romance', 'Francés'] colornames = ['light grey', 'pale red', 'medium green', 'denim blue'] df = pd.DataFrame(read_table(args.table)) data = categorical_by(df, 'lang', names) colors = sns.xkcd_palette(colornames) f, ax = plt.subplots() sns.heatmap(data, ax=ax, square=True, linewidth=0.5, cmap=ListedColormap(colors), cbar=False) set_axis(ax, data, as_letters(set(df.year.values)), 'Libros') legend(f, ax, labels, colors) plotting(plt, args)
def main(): args = get_args(__file__) names = ['NA', 'REL', 'CRONIC', 'ANTI'] labels = ['N/A', 'Religioso', 'Crónicas y Leyes', 'Historia Antigua'] colornames = ['light grey', 'pale red', 'medium green', 'denim blue'] df = pd.DataFrame(read_table(args.table)) #df = pd.read_csv(args.table) data = categorical_by(df, 'topic', names) colors = sns.xkcd_palette(colornames) f, ax = plt.subplots() sns.heatmap(data, ax=ax, square=True, linewidth=0.5, cmap=ListedColormap(colors), cbar=False) set_axis(ax, data, as_letters(df.year.values), ylabel='Posición') legend(f, ax, labels, colors) plotting(plt, args)