def __init__(self, labelfile, imagesdir, mean, std, width=800, height=800): self.width = width self.height = height self.items = common.load_webface(labelfile, imagesdir) self.mean = mean self.std = std
# create logger trial_name = "small-H-dense-wide64-UCBA" jobdir = f"jobs/{trial_name}" log = logger.create(trial_name, f"{jobdir}/logs/eval.log") # load and init model model = DBFace(has_landmark=True, wide=64, has_ext=True, upmode="UCBA") model.load(f"{jobdir}/models/150.pth") model.eval() model.cuda() # load dataset mean = [0.408, 0.447, 0.47] std = [0.289, 0.274, 0.278] files, anns = zip( *common.load_webface("webface/val/label.txt", "webface/WIDER_val/images")) # forward and summary prefix = "webface/WIDER_val/images/" all_result_dict = {} total_file = len(files) for i in range(total_file): # preper key and file_name file = files[i] key = file[len(prefix):file.rfind("/")] file_name = common.file_name_no_suffix(file) # load image and forward image = common.imread(file)