def updateEntryTimeTable(entry): bracList = [] if entry['type'] == 'dir': if entry['recursive']: bracs = common.locate('*.brac', entry['path']) elif not entry['recursive']: bracs = glob.glob(os.path.join(entry['path'], '*.brac')) for f in bracs: if f not in bracList: bracList.append(f) elif entry['type'] == 'file': if entry['path'][-4:].lower() == 'brac' and entry['path'] not in bracList: bracList.append(entry['path']) entry['bracList'] = [] for b in bracList: timetbl = getBracTimeTable(b) entry['bracList'].append({ 'path': b, 'mtime': os.path.getmtime(b), 'timetable': timetbl, }) if entry['type'] == 'dir': entry['subdirs'] = {} subdirs = common.subdirs(entry['path']) for sd in subdirs: entry['subdirs'][sd] = os.path.getmtime(sd) entry['mtime'] = os.path.getmtime(entry['path'])
def updateEntryTimeTable(entry): bracList = [] if entry['type'] == 'dir': if entry['recursive']: bracs = common.locate('*.brac', entry['path']) elif not entry['recursive']: bracs = glob.glob(os.path.join(entry['path'], '*.brac')) for f in bracs: if f not in bracList: bracList.append(f) elif entry['type'] == 'file': if entry['path'][-4:].lower( ) == 'brac' and entry['path'] not in bracList: bracList.append(entry['path']) entry['bracList'] = [] for b in bracList: timetbl = getBracTimeTable(b) entry['bracList'].append({ 'path': b, 'mtime': os.path.getmtime(b), 'timetable': timetbl, }) if entry['type'] == 'dir': entry['subdirs'] = {} subdirs = common.subdirs(entry['path']) for sd in subdirs: entry['subdirs'][sd] = os.path.getmtime(sd) entry['mtime'] = os.path.getmtime(entry['path'])
def register_inheritors(self, property, root_path, base_type, lifestyle_type = "UNKNOWN", include_base = False): if (lifestyle_type == "UNKNOWN"): lifestyle_type = self.default_lifestyle_type self.assert_valid_lifestyle_type(lifestyle_type) all_classes = [] for module_path in common.locate("*.py", root=root_path, recursive=False): module = reflection.get_module_from_path(module_path) classes = reflection.get_classes_for_module(module) for cls in classes: should_include = include_base and cls.__name__ == base_type.__name__ should_include = should_include or (cls.__bases__ is (list, tuple) and base_type.__name__ in [klass.__name__ for klass in cls.__bases__]) if should_include: all_classes.append(cls) component_definition = "indirect", lifestyle_type, all_classes, None, None
def register_inheritors(self, property, root_path, base_type, lifestyle_type = "UNKNOWN", include_base = False): if (lifestyle_type == "UNKNOWN"): lifestyle_type = self.default_lifestyle_type self.assert_valid_lifestyle_type(lifestyle_type) all_classes = [] for module_path in common.locate("*.py", root=root_path, recursive=False): try: module = reflection.get_module_from_path(module_path) except UnicodeDecodeError, err: print err raise classes = reflection.get_classes_for_module(module) for cls in classes: should_include = include_base and cls.__name__ == base_type.__name__ should_include = should_include or (isinstance(cls.__bases__, (list, tuple)) and base_type.__name__ in [klass.__name__.replace("__init__.","") for klass in cls.__bases__]) if should_include:
def register_files(self, property, root_path, pattern, lifestyle_type = "UNKNOWN"): if (lifestyle_type == "UNKNOWN"): lifestyle_type = self.default_lifestyle_type self.assert_valid_lifestyle_type(lifestyle_type) all_classes = [] for module_path in common.locate(pattern, root=root_path): module = reflection.get_module_from_path(module_path) class_name = common.camel_case(module.__name__) cls = reflection.get_class_for_module(module, class_name) if cls == None: raise AttributeError("The class %s could not be found in file %s. Please make sure that the class has the same name as the file, but Camel Cased." % (class_name, module_path)) all_classes.append(cls) component_definition = "indirect", lifestyle_type, all_classes, None, None self.components[property] = component_definition
print('idx {}'.format(idx)) idx += 1 img = tf.io.read_file(p + '/img.png') img = tf.image.decode_jpeg(img, channels=3) img = tf.image.resize(img, [width, height]) raw_img = img img = img / 255.0 result = detect_model.predict(np.array([img])) mask = create_mask(result) mask = tf.keras.preprocessing.image.array_to_img(mask) mask = np.asarray(mask) img = np.asarray(img) plate_image = locate(img, mask) plate_chars = recognition_model.predict(np.array([plate_image])) plate = [] for cs in plate_chars: plate.append(index_to_char[np.argmax(cs)]) real_plate = pathlib.Path(p).name predict_plate = ''.join(plate) if predict_plate != real_plate: print('wrong real plate is {}, predict plate is {}'.format( real_plate, predict_plate)) error_count += 1 raw_img = np.asarray(raw_img) plate_image = locate(raw_img, mask) tf.io.write_file('./dataset/error/' + real_plate + '/plate.jpeg',