np.save(writeOut+'nice',np.array([xs, avg[0],std[0], #Psi_1 avg[1],std[1], #Psi_2 avg[2],std[2], #A avg[3],std[3], #B avg[4],std[4], #par avg[5],std[5]])) #perp np.save(writeOut+'all',allData) if __name__ == "__main__": start = time.time() arrrghs = common.parseCmdArgs([['settings'],['-o','--override'] ], ['Settings json file','array indices in the format a:b to extract from infile list' ], [str,str]) main(arrrghs) print("That took {:.1f} s".format(time.time()-start)) #ADD a setting to settings to control whether we're dealing with npy #or dat
velocities = [galaxy.v for galaxy in galaxies] #get a list of all the galaxies' velocities. This will let us send it directly to the histogram bins_orig = genBins(binsize, chop) #Make a histogram using pylab histogram function. n, bins, patches = pylab.hist( velocities, bins_orig, histtype="stepfilled", label="Galaxy Distribution,\n binsize={:.2f}Mpc".format(binsize)) #Change visual properties of the histogram pylab.setp(patches, 'facecolor', 'g', 'alpha', 0.75) #Add axis labels pylab.ylabel("Galaxy count") pylab.xlabel("Radial Velocity, km/s") pylab.title("Distribution of Galaxy radial velocities") pylab.axis([0, chop, 0, 1000]) with pdfback.PdfPages(outputFile + str(binsize)) as pdf: pdf.savefig(fig) pylab.show() pylab.close('all') if __name__ == "__main__": args = common.parseCmdArgs([['settings']], ['Settings json file'], [str]) statsrun(args)
phi ] #latitude degrees - -90 - 90 outCF2String = outCF2String + '{} {} {} {} {} {}'.format( *cf2row) if use_dvs: dvs = np.random.normal(peculiarVel, rho * hubble_constant * 0.2, 20) for x in dvs: outCF2String = outCF2String + ' {}'.format(x) outCF2String = outCF2String + '\n' with open(survey['name'] + '_cf2.txt', 'w') as cf2outfile: cf2outfile.write(outCF2String) def transpose(args): print("Loading survey...") survey_info = common.getdict(args.survey_file) print("Success!") with Pool(processes=12) as pool: pool.map(proconesurvey, survey_info) if __name__ == "__main__": arrrghs = common.parseCmdArgs( [['survey_file']], ['Survey .json file with surveys and their centers'], [str]) transpose(arrrghs)
# (r1[2]-r2[2])**2) # for r1,r2 in zip(itertools.repeat(galaxyCoord),surveys)] if len(surveys) != 0: distances = space.distance.cdist([galaxyCoord], surveys) else: distances = np.array([]) if np.all(distances > separation): #All is officially the 'coolest function ever.' All of an empty list is true! surveys.append(galaxyCoord) break else: numCatches += 1 if numCatches % 500 == 0: print("So far we have tried {} times, and have {} surveys". format(numCatches, len(surveys))) #if numCatches > 100000: # raise RuntimeError("We're probably in an infinite loop. Try reducing the number of surveys to make.") print("Caught {}!".format(numCatches)) print([list(survey) for survey in surveys]) return surveys if __name__ == "__main__": arrrghs = common.parseCmdArgs( [['settings'], ['-g', '--gpu']], ['Settings json file', 'use pyCUDA when GPU is available'], [str, 'bool']) selectrun(arrrghs)