args = parser.parse_args() fn = args.timeline_filename logging.info("Loading file or prefix %s" % fn) sel_file_list = common.read_files_with_prefix(fn) ts_db = edb.get_timeseries_db() ats_db = edb.get_analysis_timeseries_db() udb = edb.get_uuid_db() psdb = edb.get_pipeline_state_db() db_array = [ts_db, ats_db, udb, psdb] for i, filename in enumerate(sel_file_list): if "pipelinestate" in filename: continue logging.info("=" * 50) logging.info("Deleting data from file %s" % filename) entries = json.load(gzip.open(filename), object_hook = bju.object_hook) # Obtain uuid and rerun information from entries curr_uuid_list, needs_rerun = common.analyse_timeline(entries) if len(curr_uuid_list) > 1: logging.warning("Found %d users, %s in filename, aborting! " % (len(curr_uuid_list), curr_uuid_list)) raise RuntimeException("Found %d users, %s in filename, expecting 1, %s" % (len(curr_uuid_list), curr_uuid_list, common.split_user_id(filename))) curr_uuid = curr_uuid_list[0] if not args.info_only: common.purge_entries_for_user(curr_uuid, args.pipeline_purge, db_array)
if "pipelinestate" in filename: continue logging.info("=" * 50) logging.info("Loading data from file %s" % filename) entries = json.load(gzip.open(filename), object_hook=bju.object_hook) # Obtain uuid and rerun information from entries curr_uuid_list, needs_rerun = common.analyse_timeline(entries) if len(curr_uuid_list) > 1: logging.warning("Found %d users, %s in filename, aborting! " % (len(curr_uuid_list), curr_uuid_list)) raise RuntimeException( "Found %d users, %s in filename, expecting 1, %s" % (len(curr_uuid_list), curr_uuid_list, common.split_user_id(filename))) curr_uuid = curr_uuid_list[0] all_user_list.append(curr_uuid) all_rerun_list.append(needs_rerun) load_ranges = get_load_ranges(entries) if not args.info_only: ts = esta.TimeSeries.get_time_series(curr_uuid) for j, curr_range in enumerate(load_ranges): if args.verbose is not None and j % args.verbose == 0: logging.info("About to load range %s -> %s" % (curr_range[0], curr_range[1])) wrapped_entries = [ ecwe.Entry(e) for e in entries[curr_range[0]:curr_range[1]] ] for entry in wrapped_entries:
ts_db = edb.get_timeseries_db() ats_db = edb.get_analysis_timeseries_db() udb = edb.get_uuid_db() for i, filename in enumerate(sel_file_list): logging.info("=" * 50) logging.info("Deleting data from file %s" % filename) entries = json.load(gzip.open(filename), object_hook = bju.object_hook) # Obtain uuid and rerun information from entries curr_uuid_list, needs_rerun = common.analyse_timeline(entries) if len(curr_uuid_list) > 1: logging.warning("Found %d users, %s in filename, aborting! " % (len(curr_uuid_list), curr_uuid_list)) raise RuntimeException("Found %d users, %s in filename, expecting 1, %s" % (len(curr_uuid_list), curr_uuid_list, common.split_user_id(filename))) curr_uuid = curr_uuid_list[0] if not args.info_only: logging.info("For uuid = %s, deleting entries from the timeseries" % curr_uuid) timeseries_del_result = ts_db.remove({"user_id": curr_uuid}) logging.info("result = %s" % timeseries_del_result) logging.info("For uuid = %s, deleting entries from the analysis_timeseries" % curr_uuid) analysis_timeseries_del_result = ats_db.remove({"user_id": curr_uuid}) logging.info("result = %s" % analysis_timeseries_del_result) logging.info("For uuid %s, deleting entries from the user_db" % curr_uuid) user_db_del_result = udb.remove({"uuid": curr_uuid}) logging.info("result = %s" % user_db_del_result)