Exemple #1
0
def get_freq_grasp(side, train_limit, test_limit):
    """
    get frequent grasp types and their occurrence frequence
    """
    train_file = "data/feature_grasp_train.csv"
    test_file = "data/feature_grasp_test.csv"
    f_feat = open(train_file, "r")
    first_line = f_feat.readline()
    tags = first_line.split(',')
    idx_g = -1
    idx_s = -1
    for i in range(len(tags)):
        if tags[i] == "grasp":
            idx_g = i
        if tags[i] == "side":
            idx_s = i
    assert (idx_g != -1 and idx_s != -1)
    grasp_count_train = {}
    features = f_feat.readlines()
    for item in features:
        item_split = item.split(',')
        if side != item_split[idx_s]:
            continue
        grasp_type = transfer_grasp_label(item_split[idx_g])
        if grasp_count_train.has_key(grasp_type):
            grasp_count_train[grasp_type] = grasp_count_train[grasp_type] + 1
        else:
            grasp_count_train[grasp_type] = 1
    for item in grasp_count_train.keys():
        if grasp_count_train[item] < train_limit:
            del grasp_count_train[item]
    f_feat.close()

    f_feat = open(test_file, "r")
    first_line = f_feat.readline()
    tags = first_line.split(',')
    idx_g = -1
    idx_s = -1
    for i in range(len(tags)):
        if tags[i] == "grasp":
            idx_g = i
        if tags[i] == "side":
            idx_s = i
    assert (idx_g != -1 and idx_s != -1)
    grasp_count_test = {}
    features = f_feat.readlines()
    for item in features:
        item_split = item.split(',')
        if side != item_split[idx_s]:
            continue
        grasp_type = transfer_grasp_label(item_split[idx_g])
        if grasp_count_test.has_key(grasp_type):
            grasp_count_test[grasp_type] = grasp_count_test[grasp_type] + 1
        else:
            grasp_count_test[grasp_type] = 1
    for item in grasp_count_test.keys():
        if grasp_count_test[item] < test_limit:
            del grasp_count_test[item]
    f_feat.close()
    return [grasp_count_train, grasp_count_test]
Exemple #2
0
def write_svmdata_grasp(srcfile, datafile, grasp_type, side, isTest):
    """
    write formed data required by libsvm\n
    """
    f_feat = open(srcfile, "r")
    first_line = f_feat.readline()
    tags = first_line.split(',')
    idx_g = -1
    idx_f = -1
    idx_s = -1
    for i in range(len(tags)):
        if tags[i] == "grasp":
            idx_g = i
        if tags[i].find("feature") == 0:
            idx_f = i
        if tags[i] == "side":
            idx_s = i
    assert (idx_g != -1 and idx_f != -1 and idx_s != -1)
    items = f_feat.readlines()
    f_feat.close()
    labels = []
    features = []
    for item in items:
        item_split = item.split(',')
        #only process right hand; modify this if double hands are to be process
        if side != item_split[idx_s]:
            continue
        label = 0
        if grasp_type == transfer_grasp_label(item_split[idx_g]):
            label = 1
        labels.append(label)
        features.append(item_split[idx_f:len(item_split) - 1])

    #project to PC axis
    data = np.array(features, dtype=np.float32)
    #    print "data before pca: ", data.shape
    #    data = feature_pca(data)
    #    print "data after pca: ", data.shape

    #make sure the first data is positive sample
    if labels[0] < 1 and isTest == 0:
        idx_pos = -1
        for i in range(len(labels)):
            if labels[i] == 1:
                idx_pos = i
        assert (idx_pos != -1)
        data_temp = np.array(data[idx_pos, :], data.dtype)
        for j in range(data.shape[1]):
            data[idx_pos, j] = data[0, j]
            data[0, j] = data_temp[j]
        labels[idx_pos] = labels[0]
        labels[0] = 1
    #write formed data required by libsvm
    f_svmdata = open(datafile, "w")
    for i in range(len(labels)):
        f_svmdata.write(str(labels[i]) + " ")
        for j in range(data.shape[1]):
            f_svmdata.write(str(j + 1) + ":" + str(data[i, j]) + " ")
        f_svmdata.write("\n")
    f_svmdata.close()
def extract_cnn_grasp_attribute(seqs):
    """
    extract deep convolutional network features for hand grasps\n
    seqs: list of sequence names\n
    dstfile: file to which features are written
    """
    g_a_left = {}
    g_a_right = {}
    for seq in seqs:
        #collect all yaml file names
        print('Prepare cnn feature from ' + seq + '...')
        command = "ls " + seq + "/*.yml > filename.txt"
        os.system(command)
        f_files = open("filename.txt", "r")
        files = f_files.readlines()
        f_files.close()    
        for j in range(len(files)):
            #read from each yaml file
            ymlfile = files[j][:len(files[j])-1]
            print(ymlfile)
            f_yml = open(ymlfile, "r")
            yml_dict = yaml.load(f_yml.read())
            f_yml.close()
            seqname = str(yml_dict["seqname"])
            filename = str(yml_dict["filename"])
            is_hLvisible = yml_dict["lefthand"]["visible"]
            hL_grasp = yml_dict["lefthand"]["grasp"]
            item_split = hL_grasp.split()
            hL_grasp = "-".join(item_split)
            hL_grasp = transfer_grasp_label(hL_grasp)
            hL_xmin = yml_dict["lefthand"]["bndbox"]["xmin"]
            hL_ymin = yml_dict["lefthand"]["bndbox"]["ymin"]
            hL_xmax = yml_dict["lefthand"]["bndbox"]["xmax"]
            hL_ymax = yml_dict["lefthand"]["bndbox"]["ymax"]
            is_hRvisible = yml_dict["righthand"]["visible"]
            hR_grasp = yml_dict["righthand"]["grasp"]
            item_split = hR_grasp.split()
            hR_grasp = "-".join(item_split)
            hR_grasp = transfer_grasp_label(hR_grasp)
            hR_xmin = yml_dict["righthand"]["bndbox"]["xmin"]
            hR_ymin = yml_dict["righthand"]["bndbox"]["ymin"]
            hR_xmax = yml_dict["righthand"]["bndbox"]["xmax"]
            hR_ymax = yml_dict["righthand"]["bndbox"]["ymax"]
            is_oLvisible = yml_dict["leftobject"]["visible"]
            oL_xmin = yml_dict["leftobject"]["bndbox"]["xmin"]
            oL_ymin = yml_dict["leftobject"]["bndbox"]["ymin"]
            oL_xmax = yml_dict["leftobject"]["bndbox"]["xmax"]
            oL_ymax = yml_dict["leftobject"]["bndbox"]["ymax"]
            is_oLprismatic = yml_dict["leftobject"]["attribute"]["prismatic"]
            is_oLsphere = yml_dict["leftobject"]["attribute"]["sphere"]
            is_oLflat = yml_dict["leftobject"]["attribute"]["flat"]
            is_oLrigid = yml_dict["leftobject"]["attribute"]["rigid"]
            is_oRvisible = yml_dict["rightobject"]["visible"]
            oR_xmin = yml_dict["rightobject"]["bndbox"]["xmin"]
            oR_ymin = yml_dict["rightobject"]["bndbox"]["ymin"]
            oR_xmax = yml_dict["rightobject"]["bndbox"]["xmax"]
            oR_ymax = yml_dict["rightobject"]["bndbox"]["ymax"]
            is_oRprismatic = yml_dict["rightobject"]["attribute"]["prismatic"]
            is_oRsphere = yml_dict["rightobject"]["attribute"]["sphere"]
            is_oRflat = yml_dict["rightobject"]["attribute"]["flat"]
            is_oRrigid = yml_dict["rightobject"]["attribute"]["rigid"]
            img = caffe.io.load_image(img_dir+"/"+seqname+"/"+filename+".jpg")
            if is_hLvisible == 1 and is_oLvisible == 1:
                value_oneframe = []
                value_oneframe.append(str(seqname)+","+str(filename)+",left")
                value_oneframe.append(str(is_oLprismatic)+","+str(is_oLsphere)+","+str(is_oLflat)+","+str(is_oLrigid))
                imgroi = img[hL_ymin:hL_ymax+1, hL_xmin:hL_xmax+1]
                net.predict([imgroi])
                feat = net.blobs[LAYER].data[INDEX].flatten().tolist()                
                feat_str = ""
                for value in feat:
                    feat_str = feat_str + str(value) + ','
                value_oneframe.append(feat_str)
                imgroi = img[oL_ymin:oL_ymax+1, oL_xmin:oL_xmax+1]
                net.predict([imgroi])
                feat = net.blobs[LAYER].data[INDEX].flatten().tolist()
                feat_str = ""
                for value in feat:
                    feat_str = feat_str + str(value) + ','
                value_oneframe.append(feat_str)
                if g_a_left.has_key(hL_grasp):
                    g_a_left[hL_grasp].append(value_oneframe)
                else:
                    g_a_left[hL_grasp] = []
                    g_a_left[hL_grasp].append(value_oneframe)
            if is_hRvisible == 1 and is_oRvisible:
                value_oneframe = []
                value_oneframe.append(str(seqname)+","+str(filename)+",right")
                value_oneframe.append(str(is_oRprismatic)+","+str(is_oRsphere)+","+str(is_oRflat)+","+str(is_oRrigid))
                imgroi = img[hR_ymin:hR_ymax+1, hR_xmin:hR_xmax+1]
                net.predict([imgroi])
                feat = net.blobs[LAYER].data[INDEX].flatten().tolist()                
                feat_str = ""
                for value in feat:
                    feat_str = feat_str + str(value) + ','
                value_oneframe.append(feat_str)
                imgroi = img[oR_ymin:oR_ymax+1, oR_xmin:oR_xmax+1]
                net.predict([imgroi])
                feat = net.blobs[LAYER].data[INDEX].flatten().tolist()
                feat_str = ""
                for value in feat:
                    feat_str = feat_str + str(value) + ','
                value_oneframe.append(feat_str)
                if g_a_right.has_key(hR_grasp):
                    g_a_right[hR_grasp].append(value_oneframe)
                else:
                    g_a_right[hR_grasp] = []
                    g_a_right[hR_grasp].append(value_oneframe)
    #        break
    #    break 
    return g_a_left, g_a_right
def edge_potential(seqs, attributes, grasps, side):
    """
    get edge potential of object attribute and grasp type from training data
    """
    print "train for edge potential...\n"
    pA = np.zeros(2**len(attributes), np.float32)
    pGbyA = np.zeros((pA.size, len(grasps)), np.float32)
    for seq in seqs:
        #collect all yaml file names
        command = "ls " + seq + "/*.yml > filename.txt"
        os.system(command)
        f_files = open("filename.txt", "r")
        files = f_files.readlines()
        f_files.close()

        for j in range(len(files)):
            #read from each yaml file
            ymlfile = files[j][:len(files[j]) - 1]
            f_yml = open(ymlfile, "r")
            yml_dict = yaml.load(f_yml.read())
            f_yml.close()
            seqname = str(yml_dict["seqname"])
            filename = str(yml_dict["filename"])
            is_oLvisible = yml_dict["leftobject"]["visible"]
            is_oLprismatic = yml_dict["leftobject"]["attribute"]["prismatic"]
            is_oLsphere = yml_dict["leftobject"]["attribute"]["sphere"]
            is_oLflat = yml_dict["leftobject"]["attribute"]["flat"]
            is_oLrigid = yml_dict["leftobject"]["attribute"]["rigid"]
            is_oRvisible = yml_dict["rightobject"]["visible"]
            is_oRprismatic = yml_dict["rightobject"]["attribute"]["prismatic"]
            is_oRsphere = yml_dict["rightobject"]["attribute"]["sphere"]
            is_oRflat = yml_dict["rightobject"]["attribute"]["flat"]
            is_oRrigid = yml_dict["rightobject"]["attribute"]["rigid"]
            is_hLvisible = yml_dict["lefthand"]["visible"]
            hL_grasp = yml_dict["lefthand"]["grasp"]
            item_split = hL_grasp.split()
            hL_grasp = "-".join(item_split)
            hL_grasp = transfer_grasp_label(hL_grasp)
            is_hRvisible = yml_dict["righthand"]["visible"]
            hR_grasp = yml_dict["righthand"]["grasp"]
            item_split = hR_grasp.split()
            hR_grasp = "-".join(item_split)
            hR_grasp = transfer_grasp_label(hR_grasp)
            if is_oLvisible == 1 and is_hLvisible == 1 and side == "left":
                idx_attribute = 0
                if is_oLflat == 1:
                    idx_attribute = idx_attribute | FLAT_ID
                if is_oLprismatic == 1:
                    idx_attribute = idx_attribute | PRISMATIC_ID
                if is_oLrigid == 1:
                    idx_attribute = idx_attribute | RIGID_ID
                if is_oLsphere == 1:
                    idx_attribute = idx_attribute | SPHERE_ID
                pA[idx_attribute] += 1
                idx_grasp = -1
                for i in range(len(grasps)):
                    if hL_grasp == grasps[i]:
                        idx_grasp = i
                if idx_grasp != -1:
                    pGbyA[idx_attribute, idx_grasp] += 1
            if is_oRvisible == 1 and is_hRvisible == 1 and side == "right":
                idx_attribute = 0
                if is_oRflat == 1:
                    idx_attribute = idx_attribute | FLAT_ID
                if is_oRprismatic == 1:
                    idx_attribute = idx_attribute | PRISMATIC_ID
                if is_oRrigid == 1:
                    idx_attribute = idx_attribute | RIGID_ID
                if is_oRsphere == 1:
                    idx_attribute = idx_attribute | SPHERE_ID
                pA[idx_attribute] += 1
                idx_grasp = -1
                for i in range(len(grasps)):
                    if hR_grasp == grasps[i]:
                        idx_grasp = i
                if idx_grasp != -1:
                    pGbyA[idx_attribute, idx_grasp] += 1
    pA.__idiv__(np.sum(pA))  #divide by sum to get proportion
    pGA = np.zeros(pGbyA.shape, pGbyA.dtype)
    L = 1.0  #universally added number
    pGbyA.__iadd__(L)
    for i in range(pGbyA.shape[0]):
        if np.sum(pGbyA[i, :]) == 0:
            continue
        pGbyA[i, :].__idiv__(np.sum(
            pGbyA[i, :]))  #divide by line sum to get proportion
        for j in range(pGbyA.shape[1]):
            pGA[i,
                j] = pGbyA[i,
                           j]  #* pA[i] uncomment when consider different prior
    return pGA