def __run(): # Setup default evaluator. evaluator = ThreeClassEvaluator(DataType.Test) experiment_data = RuSentRelTrainingData( labels_scaler=labels_scaler, stemmer=stemmer, evaluator=evaluator, opinion_formatter=RuSentRelOpinionCollectionFormatter(), callback=CallbackEvalF1NPU(DataType.Test)) extra_name_suffix = Common.create_exp_name_suffix( use_balancing=balanced_input, terms_per_context=terms_per_context, dist_in_terms_between_att_ends=dist_in_terms_between_attitude_ends) # Composing experiment. experiment = create_experiment(exp_type=exp_type, experiment_data=experiment_data, folding_type=folding_type, rusentrel_version=rusentrel_version, experiment_io_type=CustomNetworkExperimentIO, ruattitudes_version=ra_version, load_ruattitude_docs=False, extra_name_suffix=extra_name_suffix) full_model_name = Common.create_full_model_name(folding_type=folding_type, model_name=model_name, input_type=model_input_type) model_io = NeuralNetworkModelIO( full_model_name=full_model_name, target_dir=experiment.ExperimentIO.get_target_dir(), # From this depends on whether we have a specific dir or not. source_dir=None if model_name_tag is None else u"", model_name_tag=ModelNameTagArg.NO_TAG if model_name_tag is None else model_name_tag) # Setup model io. experiment_data.set_model_io(model_io) # Check dir existence in advance. model_dir = model_io.get_model_dir() if not exists(model_dir): print u"Skipping [path not exists]: {}".format(model_dir) return engine = ExperimentF1pnuEvaluator(experiment=experiment, data_type=DataType.Test, max_epochs_count=max_epochs_count, forced=force_eval) # Starting evaluation process. engine.run()
callback.set_eval_on_epochs(test_epochs_range) # Setup evaluation mode. eval_mode = EvaluationModes.Extraction if labels_count == 3 else EvaluationModes.Classification # Creating experiment evaluator = TwoClassEvaluator(eval_mode) experiment_data = RuSentRelTrainingData( labels_scaler=Common.create_labels_scaler(labels_count), stemmer=stemmer, opinion_formatter=Common.create_opinion_collection_formatter(), evaluator=evaluator, callback=callback) extra_name_suffix = Common.create_exp_name_suffix( use_balancing=balanced_input, terms_per_context=terms_per_context, dist_in_terms_between_att_ends=dist_in_terms_between_attitude_ends) experiment = create_experiment( exp_type=exp_type, experiment_data=experiment_data, folding_type=folding_type, rusentrel_version=rusentrel_version, ruattitudes_version=ra_version, experiment_io_type=CustomNetworkExperimentIO, extra_name_suffix=extra_name_suffix, load_ruattitude_docs=False) full_model_name = Common.create_full_model_name( folding_type=folding_type, model_name=model_name,