Exemple #1
0
def camera_roi_table():
    """
    進入camera ROI辨識頁面後觸發此API
    取得USER camera資訊並動態產生html回傳至前端顯示
    :return: response_data = {"html": html, "data": coordinates}
             html = 動態產生html 讓JS直接渲染頁面
             coordinates = 攝影機相關訊息, 選定ROI , 攝影機長寬 , IP位置等
    """
    camera_data_path = "customer/root/camera.data"
    camera_data = get_json_data(camera_data_path)
    response_data = html_camera_roi_table_maker(camera_data)
    return response_data
Exemple #2
0
def camera_create():
    """
    再設定攝影機頁面點選新增攝影機時的API
    產生HTML並回傳至前端給JS渲染
    :return: html = 動態產生html 讓JS直接渲染頁面
    """
    if request.method == "GET":
        data_path = 'customer/root/camera.data'
        dic_data = get_json_data(data_path)
        html = html_camera_create_maker(dic_data)
        return html
    return {"status": 0}
Exemple #3
0
def camera_set():
    """
    網頁點選設定攝影按鈕機進入設定攝影機頁面,
    根據camera.data 中的攝影機資料回傳至前端渲染頁面
    :return: html = 動態產生html 讓JS直接渲染頁面
    """
    if request.method == "GET":
        data_path = 'customer/root/camera.data'
        if not isfile(data_path):
            init_json_file(data_path)
        dic_data = get_json_data(data_path)

        html = html_camera_maker(dic_data)
        return html
    return {"message": "error"}
Exemple #4
0
def jetson_nano_request(product_id, username, image_name, image_src, ip,
                        function):
    """
    目前只支援jetson nano /bread/query/basic/v2 api
    將圖片資訊發送request至jetson nano做圖片偵測擷取其中物件
    並將結果的YOLO model output id 轉換為客戶product id
    儲存至convert_recognition.data 及 recognition.data
    :param product_id: 客戶產品ID
    :param username: 此專案都預設為ROOT
    :param image_name: 該圖片的檔案名稱
    :param image_src: 圖片轉成base64字串
    :param ip: Jetson nano ip
    :param function: Jetson nano 提供的API URL
    :return:
    """
    # image_src is only one image base64
    send_data = {
        "function": "basic",
        "values": [{
            "id": 0,
            "b64string": image_src
        }]
    }
    try:
        # for testing , fake API response
        ans = {
            "rtn":
            200,
            "items": [{
                "id":
                0,
                "item": [{
                    "num": 0,
                    "position": [200, 200, 200, 200],
                    "confidence": 0.8,
                    "real_id": 1,
                    "name": "Taro"
                }]
            }]
        }
        if not TESTING_NOT_CONNET_JETSON_NANO:
            ans = requests.post(ip + function, json=send_data).json()

    except Exception as e:
        # request fail
        print("%s  %s location recognition request fail" %
              (product_id, image_name))
        return ""

    if ans['rtn'] == 400:
        print("%s  %s location recognition request fail x" %
              (product_id, image_name))
        return ""
    # Parsing data to dict
    convert_dict = {}
    response_data = ans["items"]

    for data in response_data:
        id = str(data["item"][0]["real_id"])
        if id not in convert_dict:
            convert_dict[id] = {product_id: 1}
        else:
            if product_id in convert_dict[id]:
                convert_dict[id][product_id] += 1
            else:
                convert_dict[id][product_id] = 1

    ################ update convert_recognition.data################

    convert_json_path = CUSTOMER_FILE + username + '/convert_recognition.data'
    data_lock = CUSTOMER_FILE + username + '/convert_datalock'
    # if data lock exited , sleep a little time
    while isfile(data_lock):
        lockfile_sleep(data_lock)

    # create data lock file
    create_lock_file(data_lock)

    # if convert_recognition.data not exited , create it
    if not isfile(convert_json_path):
        init_json_file(convert_json_path)

    convert_recognition_dict = get_json_data(convert_json_path)
    convert_recognition_dict[product_id + '/' + image_name] = convert_dict
    overwrite_json_data(convert_json_path, convert_recognition_dict)

    # delete data lock file
    delete_lock_file(data_lock)

    # update recognition.data
    recognition_json_path = CUSTOMER_FILE + username + '/recognition.data'
    data_lock = CUSTOMER_FILE + username + '/recognition_datalock'

    # if data lock exited , sleep a little time
    while isfile(data_lock):
        lockfile_sleep(data_lock)

    # create data lock file
    create_lock_file(data_lock)

    # if recognition.data not exited , create it
    if not isfile(recognition_json_path):
        init_json_file(recognition_json_path)

    recognition_dict = get_json_data(recognition_json_path)
    recognition_dict_keys = recognition_dict.keys()
    keys = convert_dict.keys()
    for key in keys:
        if key in recognition_dict:
            if product_id in recognition_dict[key]:
                recognition_dict[key][product_id] += convert_dict[key][
                    product_id]
            else:
                recognition_dict[key][product_id] = convert_dict[key][
                    product_id]
        else:
            recognition_dict[key] = convert_dict[key]

    overwrite_json_data(recognition_json_path, recognition_dict)
    # delete data lock file
    delete_lock_file(data_lock)
Exemple #5
0
def delete_product_image():
    """
    儲存產品圖片,可以一次刪除多張圖片
    刪除圖片後開啟recognition.data, convert_recognition.data 清除該圖片對應映射資料
    """
    if request.method == "POST":

        username = '******'
        data = request.get_json()
        image_name = data["file_path"]
        product_id = str(data["product_id"])
        path = CUSTOMER_FILE + username + '/'
        image_path = path + product_id + '/' + image_name
        data_lock = path + '/datalock'

        #######   delete image file and rewrite json data image count
        while isfile(data_lock):
            lockfile_sleep(data_lock)
        # create data lock file
        with open(data_lock, 'w') as lock:
            pass
        try:
            remove(image_path)
        except Exception as e:
            return {"message": "image delete error"}

        json_file_path = path + product_id + '/' + 'data.data'
        rewrite_count = str(int(get_json_image_count(json_file_path)) - 1)
        rewrite_json_image_count(json_file_path, rewrite_count)
        delete_lock_file(data_lock)
        ##############################################################

        ####### rewrite recognition.data and convert_recognition.data

        convert_json_path = CUSTOMER_FILE + username + '/convert_recognition.data'
        data_lock = CUSTOMER_FILE + username + '/convert_datalock'
        convert_json_key = product_id + '/' + image_name

        while isfile(data_lock):
            lockfile_sleep(data_lock)

        # create data lock file
        create_lock_file(data_lock)
        convert_recognition_dict = get_json_data(convert_json_path)

        # get data which key is convert_json_key and delete the key
        data_dict = convert_recognition_dict.pop(convert_json_key)
        overwrite_json_data(convert_json_path, convert_recognition_dict)

        # delete data lock file
        delete_lock_file(data_lock)

        #
        recognition_json_path = CUSTOMER_FILE + username + '/recognition.data'
        data_lock = CUSTOMER_FILE + username + '/recognition_datalock'

        while isfile(data_lock):
            lockfile_sleep(data_lock)

        # create data lock file
        create_lock_file(data_lock)
        recognition_dict = get_json_data(recognition_json_path)

        model_keys = data_dict.keys()
        for model_key in model_keys:
            product_keys = data_dict[model_key].keys()
            for product_key in product_keys:
                recognition_dict[model_key][product_key] -= data_dict[
                    model_key][product_key]

        overwrite_json_data(recognition_json_path, recognition_dict)
        # delete data lock file
        delete_lock_file(data_lock)
        print("delete image all process done!")
        return {"message": "done"}
    return {"message": "post only"}
Exemple #6
0
def customer_delete_product_data():
    """
    客戶商品清單頁面選取商品刪除觸發API , 可以一次刪除多筆資料
    :return: {"message": str, "status": str}
             message:
    """
    if request.method == "DEL":
        username = '******'
        data = request.get_json()
        # get product id as list
        product_ids = data["product_id"]

        # 尋找刪除的productID在recognition.data 與 convert_recognition.data中的資料並刪除
        # get json data from convert_recognition.data
        recognition_json_path = CUSTOMER_FILE + username + '/recognition.data'
        convert_json_path = CUSTOMER_FILE + username + '/convert_recognition.data'
        data_lock = CUSTOMER_FILE + username + '/convert_datalock'

        # if not isfile(convert_json_path) or not isfile(recognition_json_path):
        #     return {"message": "not image data", "status": "02"}
        # if data lock exited , sleep a little time
        while isfile(data_lock):
            lockfile_sleep(data_lock)

        # create data lock file
        create_lock_file(data_lock)
        convert_recognition_dict = get_json_data(convert_json_path)

        convert_recognition_dict_keys = convert_recognition_dict.keys()
        delete_covert_keys = []
        for key in convert_recognition_dict_keys:
            pro_key = key.split('/')[0]
            if pro_key in product_ids:
                delete_covert_keys.append(key)
        for key in delete_covert_keys:
            del convert_recognition_dict[key]

        # convert_recognition data done
        # make recognition

        overwrite_recognition_dict = {}
        convert_keys = convert_recognition_dict.keys()
        for convert_key in convert_keys:
            recognition_keys = convert_recognition_dict[convert_key].keys()
            for recognition_key in recognition_keys:
                if recognition_key not in overwrite_recognition_dict:
                    overwrite_recognition_dict[recognition_key] = \
                        convert_recognition_dict[convert_key][recognition_key]
                else:
                    product_keys = convert_recognition_dict[convert_key][
                        recognition_key].keys()
                    for product_key in product_keys:
                        if product_key not in overwrite_recognition_dict[
                                recognition_key]:
                            overwrite_recognition_dict[recognition_key][product_key] = \
                                convert_recognition_dict[convert_key][recognition_key][product_key]
                        else:
                            overwrite_recognition_dict[recognition_key][product_key] += \
                                convert_recognition_dict[convert_key][recognition_key][product_key]

        overwrite_json_data(convert_json_path, convert_recognition_dict)

        # delete data lock file
        delete_lock_file(data_lock)

        data_lock = CUSTOMER_FILE + username + '/recognition_datalock'
        while isfile(data_lock):
            lockfile_sleep(data_lock)

        # create data lock file
        create_lock_file(data_lock)

        # overwirte recognition.data
        overwrite_json_data(recognition_json_path, overwrite_recognition_dict)

        # delete data lock file
        delete_lock_file(data_lock)

        # delete file
        for product_id in product_ids:
            file_path = CUSTOMER_FILE + username + '/' + product_id
            try:
                rmtree(file_path)
            except Exception as e:
                print(e)
        return {"message": "done", "status": "01"}
    return {"message": "del only", "status": "02"}
Exemple #7
0
def Recognition_bread():
    """
    發送Post Request至Jetson nano上,API格式查詢gitlab 機器設備issues
    目前頁面拔除該功能, 此API暫時用不到
    data : JSON "b64string": 圖片的base64
    :return:
    """
    if request.method == "POST":
        username = USERFILE
        data = request.get_json()
        # for testing image shape
        send_data = {
            "function": "basic",
            "values": [{
                "id": 0,
                "b64string": data["b64string"]
            }]
        }
        try:
            # for testing , fake API response
            response_data = {
                "rtn":
                200,
                "items": [{
                    "id":
                    0,
                    "item": [{
                        "num": 0,
                        "position": [200, 200, 200, 200],
                        "confidence": 0.8,
                        "real_id": 1,
                        "name": "Taro"
                    }]
                }]
            }

            if not TESTING_NOT_CONNET_JETSON_NANO:
                ans = requests.post(TEST_JETSONNANO_IP + JETSONNANO_API_BASIC,
                                    json=send_data)
                response_data = ans.json()
            print("response_data", response_data)
            recognition_json_path = CUSTOMER_FILE + username + '/recognition.data'
            data_lock = CUSTOMER_FILE + username + '/recognition_datalock'

            # if data lock exited , sleep a little time
            while isfile(data_lock):
                lockfile_sleep(data_lock)

            # create data lock file
            create_lock_file(data_lock)

            recognition_dict = get_json_data(recognition_json_path)
            # delete data lock file
            delete_lock_file(data_lock)

            prepare_data = []
            for index, data_item in enumerate(
                    response_data["items"][0]["item"]):
                # model_id is response yolo model output
                model_id = str(data_item["real_id"])  #########
                print("model_id", model_id)
                max_id = ''
                if model_id in recognition_dict:
                    max_count = 0
                    for key in recognition_dict[model_id].keys():
                        if recognition_dict[model_id][key] > max_count:
                            max_count = recognition_dict[model_id][key]
                            max_id = key
                if max_id == '':
                    max_id = random_product_id(username)

                data_lock = CUSTOMER_FILE + username + '/' + max_id + '/datalock'
                # create data lock file
                create_lock_file(data_lock)
                data_json = get_json_data(CUSTOMER_FILE + username + '/' +
                                          max_id + '/data.data')
                # delete data lock file
                delete_lock_file(data_lock)
                data_name = data_json["product_name"]
                prepare_data.append([max_id, data_name])

            for i, datas in enumerate(prepare_data):
                response_data["items"][0]["item"][i]["real_id"] = datas[0]
                response_data["items"][0]["item"][i]["name"] = datas[1]

            return response_data
        except Exception as e:
            print(e)
            return {"rtn": 400}
    else:
        return {"rtn": 400, "message": "Error, pls using post"}
Exemple #8
0
def roiInference():
    """
    從Camera辨識發起辨識 request 將前端camera資訊帶入後端,
    前端網頁img介面為400*400但傳送的base64為原圖尺寸, 需要將ROI的4個定位點依照尺寸的差異比例進行縮放,
    處理完畢後將資料打入jetson nano API /bread/query/nine/v2中,
    收到response後將內容整理成html以及資料特定格式回傳至前端做顯示
    :return:
        response_data = {
            "html": list,
            "items": list,
            "position": list
        }
        html : 交給JS渲染網頁
        position: 經由後端處理將重複的ID整合交給JS渲染個別商品的ROI
        items: jetson nano API /bread/query/nine/v2 的response
    """
    if request.method == "POST":
        username = USERFILE
        request_data = request.get_json()
        datas = request_data["data"]
        print('get input datas:', datas)
        # keep_data = [[key,AnchorWidth, AnchorHeight],[key,AnchorWidth, AnchorHeight],....]
        keep_data = []
        datas_jetson = []

        # 前端網頁img介面為400*400但傳送的base64為原圖尺寸, 需要將ROI的4個定位點依照尺寸的差異比例進行縮放,
        for i, re_data in enumerate(datas):
            keep_data.append([
                re_data["key"], re_data["AnchorWidth"], re_data["AnchorHeight"]
            ])
            ip = re_data["ip"]
            painted = re_data["painted"]
            coordinates = []
            if painted:
                x = int(re_data["coordinate"][0][0] * re_data["AnchorWidth"])
                y = int(re_data["coordinate"][0][1] * re_data["AnchorHeight"])
                coordinates.append([x, y])
                x = int(re_data["coordinate"][1][0] * re_data["AnchorWidth"])
                y = int(re_data["coordinate"][1][1] * re_data["AnchorHeight"])
                coordinates.append([x, y])
                x = int(re_data["coordinate"][2][0] * re_data["AnchorWidth"])
                y = int(re_data["coordinate"][2][1] * re_data["AnchorHeight"])
                coordinates.append([x, y])
                x = int(re_data["coordinate"][3][0] * re_data["AnchorWidth"])
                y = int(re_data["coordinate"][3][1] * re_data["AnchorHeight"])
                coordinates.append([x, y])
            datas_jetson.append({
                "id": i,
                "cam_type": "ip_cam",
                "cam_addr": ip,
                "roi": coordinates
            })

        send_data = {"function": "nine", "values": datas_jetson}
        # try:
        # 發送給request 給 jestson nano /bread/query/nine/v2
        if not TESTING_NOT_CONNET_JETSON_NANO:
            ans = requests.post(TEST_JETSONNANO_IP + JETSONNANO_API_NINE,
                                json=send_data)
            response_data = ans.json()
            print()
        else:
            # 僅供測試用, TESTING_NOT_CONNET_JETSON_NANO 為TRUE的話不發送request 到jetson nano
            base64_test = ""
            response_data = {
                "rtn":
                200,
                "items": [{
                    "id":
                    0,
                    "b64string":
                    base64_test,
                    "roi":
                    datas_jetson[0]["roi"],
                    "percentage":
                    0.5,
                    "item": [{
                        "num":
                        0,
                        "position": [[-8, -4], [261, -4], [261, 454],
                                     [-8, 454]],
                        "confidence":
                        0.8,
                        "real_id":
                        2,
                        "name":
                        "BA"
                    }]
                }, {
                    "id":
                    1,
                    "b64string":
                    base64_test,
                    "roi":
                    datas_jetson[1]["roi"],
                    "percentage":
                    0.7,
                    "item": [{
                        "num":
                        0,
                        "position": [[30, 170], [1025, 400], [50, 150],
                                     [30, 70]],
                        "confidence":
                        0.8,
                        "real_id":
                        1,
                        "name":
                        "Taro"
                    }]
                }]
            }
        # response rtn欄位不等於200表示錯誤狀態 直接回傳前端錯誤結果
        if response_data["rtn"] != 200:
            return response_data

        # 開始將原yolo model output id 轉換為customer product id
        # 從 recognition.data 取得 customer product 映射
        recognition_json_path = CUSTOMER_FILE + username + '/recognition.data'
        data_lock = CUSTOMER_FILE + username + '/recognition_datalock'

        # if data lock exited , sleep a little time
        while isfile(data_lock):
            lockfile_sleep(data_lock)

        # create data lock file
        create_lock_file(data_lock)

        recognition_dict = get_json_data(recognition_json_path)
        # delete data lock file
        delete_lock_file(data_lock)

        # name_dict : use product_id to get product_name
        name_dict = {}
        path = CUSTOMER_FILE + USERFILE
        files = listdir(path)
        for file in files:
            if isdir(path + '/' + file):
                data_data = get_json_data(path + '/' + file + '/data.data')
                product_name = data_data["product_name"]
                product_id = data_data["product_id"]
                name_dict[product_id] = product_name

        total_percentage = 0
        image_count = len(response_data["items"])
        items_datas = {}
        htmls = []
        data_locations = []
        for i in range(image_count):
            item_datas = {}
            # set original data-key, anchorWidth and anchorHeight  to response
            response_data["items"][i]["id"] = keep_data[i][0]
            response_data["items"][i]["AnchorWidth"] = keep_data[i][1]
            response_data["items"][i]["AnchorHeight"] = keep_data[i][2]
            response_data["items"][i]["b64string"] = PREBASE64 + response_data[
                "items"][i]["b64string"]

            iamge_items_count = len(response_data["items"][i]["item"])
            percentage_response = response_data["items"][i]["percentage"]
            total_percentage += percentage_response
            # turn model id and name to customer product id and name.
            for l in range(iamge_items_count):
                model_id = str(response_data["items"][i]["item"][l]["real_id"])
                max_id = ''
                if model_id in recognition_dict:
                    max_count = 0
                    for key in recognition_dict[model_id].keys():
                        if recognition_dict[model_id][key] > max_count:
                            max_count = recognition_dict[model_id][key]
                            max_id = key
                if max_id == '':
                    max_id = random_product_id(username)

                response_data["items"][i]["item"][l]["real_id"] = max_id
                max_name = name_dict[max_id]
                if max_id in item_datas:
                    item_datas[max_id]["count"] += 1
                    item_datas[max_id]["position"].append(
                        response_data["items"][i]["item"][l]["position"])
                else:
                    item_datas[max_id] = {
                        "AnchorWidth":
                        keep_data[i][1],
                        "AnchorHeight":
                        keep_data[i][2],
                        "count":
                        1,
                        "name":
                        max_name,
                        "position":
                        [response_data["items"][i]["item"][l]["position"]],
                        "cam_id":
                        response_data["items"][i]["id"],
                        "real_id":
                        max_id
                    }
                if max_id in items_datas:
                    items_datas[max_id]["count"] += 1
                else:
                    items_datas[max_id] = {"count": 1, "name": max_name}

            # item_datas is one image all product id and name and count
            html = html_camera_roi_inference_table_maker(
                item_datas, percentage_response, False)
            data_locations.append(item_datas)
            htmls.append({"key": keep_data[i][0], "html": html})

        total_percentage = total_percentage / image_count
        html = html_camera_roi_inference_table_maker(items_datas,
                                                     total_percentage, True)
        htmls.append({"key": "total", "html": html})
        response_data["html"] = htmls
        response_data["position"] = data_locations
        return response_data